Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(50): 24956-24965, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31757850

RESUMEN

Eukaryote cell division features a chromosome compaction-decompaction cycle that is synchronized with their physical and topological segregation. It has been proposed that lengthwise compaction of chromatin into mitotic chromosomes via loop extrusion underlies the compaction-segregation/resolution process. We analyze this disentanglement scheme via considering the chromosome to be a succession of DNA/chromatin loops-a polymer "brush"-where active extrusion of loops controls the brush structure. Given type-II DNA topoisomerase (Topo II)-catalyzed topology fluctuations, we find that interchromosome entanglements are minimized for a certain "optimal" loop that scales with the chromosome size. The optimal loop organization is in accord with experimental data across species, suggesting an important structural role of genomic loops in maintaining a less entangled genome. Application of the model to the interphase genome indicates that active loop extrusion can maintain a level of chromosome compaction with suppressed entanglements; the transition to the metaphase state requires higher lengthwise compaction and drives complete topological segregation. Optimized genomic loops may provide a means for evolutionary propagation of gene-expression patterns while simultaneously maintaining a disentangled genome. We also find that compact metaphase chromosomes have a densely packed core along their cylindrical axes that explains their observed mechanical stiffness. Our model connects chromosome structural reorganization to topological resolution through the cell cycle and highlights a mechanism of directing Topo II-mediated strand passage via loop extrusion-driven lengthwise compaction.


Asunto(s)
Cromatina , Cromosomas , Animales , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , ADN/química , ADN/metabolismo , Genoma/genética , Humanos , Metafase/genética , Mitosis/genética , Modelos Genéticos , Schizosaccharomyces/genética
2.
Adv Exp Med Biol ; 1092: 11-39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30368746

RESUMEN

We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints- entanglement and supercoiling-impact physical and mechanical responses. Models for protein-DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein-DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Cromatina/química , Cromosomas , Humanos , Modelos Moleculares , Neoplasias/genética , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA