Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 220(Pt 16): 2900-2907, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28596213

RESUMEN

Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g. avian syrinx). Some species actively exploit acoustic properties of natural structures to enhance signal transmission by using these as secondary resonators (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal stridulation and often use specialised wing areas as primary resonators. Interestingly, Acanthacara acuta, a Neotropical bush-cricket, exhibits an unusual pronotal inflation, forming a chamber covering the wings. It has been suggested that such pronotal chambers enhance amplitude and tuning of the signal by constituting a (secondary) Helmholtz resonator. If true, the intact system - when stimulated sympathetically with broadband sound - should show clear resonance around the song carrier frequency which should be largely independent of pronotum material, and change when the system is destroyed. Using laser Doppler vibrometry on living and preserved specimens, microcomputed tomography, 3D-printed models and finite element modelling, we show that the pronotal chamber not only functions as a Helmholtz resonator owing to its intact morphology but also resonates at frequencies of the calling song on itself, making song production a three-resonator system.


Asunto(s)
Comunicación Animal , Ortópteros/anatomía & histología , Ortópteros/fisiología , Alas de Animales/anatomía & histología , Animales , Ecuador , Análisis de Elementos Finitos , Masculino , Impresión Tridimensional , Vibración , Alas de Animales/fisiología , Microtomografía por Rayos X
2.
J Exp Biol ; 216(Pt 20): 3863-72, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23868848

RESUMEN

The mechanical tuning of the ear in the moth Empyreuma pugione was investigated by distortion-product otoacoustic emissions (DPOAE) and laser Doppler vibrometry (LDV). DPOAE audiograms were assessed using a novel protocol that may be advantageous for non-invasive auditory studies in insects. To evoke DPOAE, two-tone stimuli within frequency and level ranges that generated a large matrix of values (960 frequency-level combinations) were used to examine the acoustic space in which the moth tympanum shows its best mechanical and acoustical responses. The DPOAE tuning curve derived from the response matrix resembles that obtained previously by electrophysiology, and is V-shaped and tuned to frequencies between 25 and 45 kHz with low Q10dB values of 1.21±0.26. In addition, while using a comparable stimulation regime, mechanical distortion in the displacement of the moth's tympanal membrane at the stigma was recorded with a laser Doppler vibrometer. The corresponding mechanical vibration audiograms were compared with DPOAE audiograms. Both types of audiograms have comparable shape, but most of the mechanical response fields are shifted towards lower frequencies. We showed for the first time in moths that DPOAE have a pronounced analogy in the vibration of the tympanic membrane where they may originate. Our work supports previous studies that point to the stigma (and the internally associated transduction machinery) as an important place of sound amplification in the moth ear, but also suggests a complex mechanical role for the rest of the transparent zone.


Asunto(s)
Estimulación Acústica , Oído Medio/fisiología , Emisiones Otoacústicas Espontáneas/fisiología , Vibración , Animales , Audiometría , Efecto Doppler , Rayos Láser , Mariposas Nocturnas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA