Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros











Intervalo de año de publicación
1.
AIMS Microbiol ; 10(2): 255-272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919719

RESUMEN

Fruit and vegetable industries face a major environmental challenge with food loss and waste. Broccoli stems, comprising 38% of the plant's total weight, are usually discarded by the industry producing fourth-range and ready-to-use products, despite being rich in antioxidants, vitamins, fiber, carotenoids, phenolic compounds, and glucosinolates. Addressing the challenge of reducing waste in this sector includes the production of stable and nutrient-concentrated powders, which can be consumed directly or used as ingredients in functional food formulation. This study investigated fermentation with lactic acid bacteria (Limosilactobacillus reuteri, Lactiplantibacillus plantarum, and Lactobacillus salivarius) as a pretreatment for enhancing antioxidant and probiotic potential in broccoli stem powders. Results showed maximum counts 24 h after inoculation, and no effect of the previous disruption intensity on microbial growth was observed. Fermenting broccoli stems for 24 h with the three microbial strains led to a significant increase in total phenols and flavonoids but to a general reduction in the samples' capacity to scavenge DPPH and ABTS free radicals. Overall, ground broccoli stems exhibited the most favorable antioxidant properties following the 24 h fermentation step. The subsequent freeze-drying and final grinding had minimal impact on the microbial population but significantly enhanced the extractability of the antioxidant compounds. This study offers a valuable reference for researchers and stakeholders exploring the development of new products and innovations from vegetable waste.

2.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892626

RESUMEN

In this study, we prepared fermented products of isoflavone-enriched soybean leaves (IESLs) and analyzed their nutrients, isoflavones, anti-obesity efficacy, and effects on gut microbiota. Fermented IESLs (FIESLs) were found to be rich in nutrients, especially lauric acid, oleic acid, and linoleic acid. In addition, the concentrations of most essential free amino acids were increased compared to those of IESLs. The contents of bioactive compounds, such as total phenolic, total flavonoid, daidzein, and genistein, significantly increased as well. In addition, FIESLs administration in a high-fat diet (HFD) animal model improved the final body weight, epididymal fat, total lipid, triglyceride, total cholesterol, blood glucose, and leptin levels, as well as reverting microbiota dysbiosis. In conclusion, these findings indicate that FIESLs have the potential to inhibit obesity caused by HFDs and serve as a modulator of gut microbiota, offering the prevention of diet-induced gut dysbiosis and metabolite diseases associated with obesity.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Fermentación , Microbioma Gastrointestinal , Glycine max , Isoflavonas , Ácido Láctico , Obesidad , Hojas de la Planta , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Isoflavonas/farmacología , Obesidad/metabolismo , Obesidad/microbiología , Masculino , Dieta Alta en Grasa/efectos adversos , Fármacos Antiobesidad/farmacología , Ácido Láctico/metabolismo , Ratones Endogámicos C57BL , Ratones , Disbiosis
3.
Food Sci Nutr ; 12(6): 4372-4384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873455

RESUMEN

The aims of this research were to investigate the usability of black grape pomace in the production of shalgam juice, which is a traditional fermented Turkish beverage, to transform the pomace into the high value-added product and to enrich the shalgam juice with phenolic compounds. Black grape pomace and black carrot were used as the sources of polyphenols and five different formulations were obtained according to the amounts of black carrot and black grape pomace. During the fermentation, the samples were taken at different periods and analyzed for anthocyanins, phenolic compounds, antioxidant activity, and tannin content. Gentisic, caffeic, ferulic, coumaric, and chlorogenic acids, catechin, glucosides of kaemferol and isorhamnetin, resveratrol, rutin, cyanidin-3-xylosylglucosylgalactoside, cyanidin-3-xylosylgalactoside, cyanidin-3-xylosylglucosylgalactoside acylated with sinapic acid, ferulic acid, or coumaric acid, and glucosides of cyanidin, petunidin, and malvidin were identified in the shalgam juices that contained both black grape pomace and black carrot in their formulation. Some of these polyphenols were not detected detect in the shalgam juices that were produced from only the black carrot or black grape pomace. During the fermentation, a decrease in the amount of anthocyanins originated from black carrots and an increase in the amount of anthocyanins orginated from black grape pomace were determined. Black grape pomace addition to the formulation before the fermentation caused an increase in the amount of tannin in the shalgam juice samples. Consequently, it is thought that black grape pomace can be fruitfully evaluated in shalgam juice production and can be enhanced by polyphenolic profile of shalgam juice.

4.
Bioresour Bioprocess ; 11(1): 54, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780813

RESUMEN

Biodetoxification fungus selectively degrades toxic inhibitors generated from pretreatment of lignocellulose without consuming fermentable sugars. However, one barrier for practical application is the sustained cell viability in the consequent fermentation step to compete the fermentable sugars with fermenting strains, resulting in sugar loss and reduced target product yield. This study investigated the competitive growth property between the biodetoxification fungus Paecilomyces variotii FN89 and the L-lactic acid bacterium Pediococcus acidilactici ZY271 under varying temperature and lactic acid osmatic stress. The results show that the L-lactic acid bacterium Ped. acidilactici ZY271 showed less thermotolerance to Pae. variotii FN89 at high temperature of 45 °C to 50 °C in both synthetic medium and wheat straw hydrolysate. In the higher temperature environment, the growth of the biodetoxification strian failed to compete with the lactic acid fermentation strain and was quickly eliminated from the fermentation system. The high temperature fermentation facilitated a fast transition from the detoxification stage to the fermentation stage for higher production of L-lactic acid.

5.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675547

RESUMEN

Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: 'Halbhoner Grüner Krauser', 'Scarlet', and 'Nero di Toscana'. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in 'Nero di Toscana'. Extracts of spontaneously fermented 'Scarlet' (SS) and 'Nero di Toscana' (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1ß and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods.


Asunto(s)
Antioxidantes , Brassica , Fermentación , Fenoles , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Fenoles/farmacología , Fenoles/análisis , Fenoles/química , Células CACO-2 , Brassica/química , Brassica/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de la Colinesterasa/farmacología , Cromatografía Líquida de Alta Presión , Polifenoles/farmacología , Polifenoles/química
6.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38167751

RESUMEN

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Asunto(s)
Lactobacillales , Photinia , Antioxidantes/química , Antocianinas , Ácido Láctico/análisis , Photinia/química , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Fenoles/análisis , Flavonoides , Lactobacillus acidophilus/metabolismo , Lactobacillales/metabolismo
7.
J Gen Appl Microbiol ; 70(2)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38281752

RESUMEN

To enhance the value of surimi, efforts have been made to develop a fermentation method with lactic acid bacteria (LAB) to proteolyze fish protein. However, fermenting unheated surimi poses a spoilage risk due to its high bacterial content. Surimi heat treatment can prevent spoilage, but gel formation induced by heating introduces another technical issue: it hinders uniform fermentation. Thus, this study aims to observe the proteolysis and enhance the functionality of seafood product through lactic acid fermentation of kamaboko, a heated surimi. Upon analyzing the kamaboko fermented with Lactobacillus helveticus JCM1004, we observed that LAB produced protease, resulting in the degradation of myosin heavy chain and actin during fermentation. Lactic acid fermentation significantly augmented the peptide content of kamaboko, subsequently elevating the angiotensin Ⅰ-converting enzyme (ACE) inhibitory activity in 200-fold diluted extract of fermented kamaboko to approximately 70% and higher. Notably, our investigation revealed that proteolysis was confined to the surface of kamaboko, as evidenced by SDS-PAGE analysis. This observation implies that the surface area of kamaboko influences the ACE inhibitory activity. Through a comparative analysis of various bacterial strains, we demonstrated that the increase in ACE inhibitory activity is contingent on the protease generated by LAB. These results suggest that LAB-mediated proteolysis of fish proteins liberates bioactive peptides, thereby manifesting in the ACE inhibitory activity. In summary, this study underscores that the fermentation of kamaboko employing proteolytic LAB holds promise in the development of novel functional seafood products.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Fermentación , Proteínas de Peces , Ácido Láctico , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Animales , Proteínas de Peces/metabolismo , Hidrólisis , Ácido Láctico/metabolismo , Proteolisis , Productos Pesqueros/microbiología , Productos Pesqueros/análisis , Gadiformes/metabolismo , Lactobacillus helveticus/metabolismo , Alimentos Marinos/microbiología , Calor , Microbiología de Alimentos , Lactobacillales/metabolismo
8.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37894878

RESUMEN

Berries are rich in bioactive compounds, including antioxidants and especially polyphenols, known inhibitors of starch metabolism enzymes. Lactic acid fermentation of fruits has received considerable attention due to its ability to enhance bioactivity. This study investigated the effect of fermentation with L. mesenteroides of juice from the Chilean berry murta on antioxidant activity, release of polyphenols, and inhibitory activity against α-amylase and α-glucosidase enzymes. Three types of juices (natural fruit, freeze-dried, and commercial) were fermented. Total polyphenol content (Folin-Ciocalteu), antioxidant activity (DPPH and ORAC), and the ability to inhibit α-amylase and α-glucosidase enzymes were determined. Fermented murta juices exhibited increased antioxidant activity, as evidenced by higher levels of polyphenols released during fermentation. Inhibition of α-glucosidase was observed in the three fermented juices, although no inhibition of α-amylase was observed; the juice from freeze-dried murta stood out. These findings highlight the potential health benefits of fermented murta juice, particularly its antioxidant properties and the ability to modulate sugar assimilation by inhibiting α-glucosidase.


Asunto(s)
Antioxidantes , alfa-Glucosidasas , Antioxidantes/farmacología , Antioxidantes/química , alfa-Glucosidasas/química , Fermentación , Glucosa , Polifenoles/farmacología , alfa-Amilasas
9.
Bioresour Technol ; 388: 129729, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690486

RESUMEN

Lignocellulosic biomass is a reliable feedstock for lactic acid fermentation, low product titers hamper the scale production of cellulosic lactic acid. In this study, a Densifying Lignocellulosic biomass with Chemicals (sulfuric acid) pretreatment based cellulosic lactic acid biorefinery system was developed and demonstrated from multi-dimensions of producing bacteria, fermentation modes, corn stover solid loadings, fermentation vessels, and product purification. Results suggested that several lactic acid bacteria exhibited high fermentation activity in high solid loading corn stover hydrolysates. Remarkably, simultaneous saccharification co-fermentation performed in 100-mL flasks enabled 210.1 g/L lactic acid from 40% solid loading corn stover hydrolysate. When simultaneous saccharification co-fermentation was performed in 3-L bioreactors, 157.4 g/L lactic acid was obtained from 35% solid loading corn stover hydrolysate. These obtained lactic acid titers are the highest reports until now when lignocellulosic biomasses are used as substrates, making it efficient for scale production of cellulosic lactic acid.


Asunto(s)
Ácido Láctico , Zea mays , Reactores Biológicos/microbiología , Fermentación
10.
Int Microbiol ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700156

RESUMEN

Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation, i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5-7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum-inoculated fermentation, and spontaneous fermentation. Plant material was dehydrated at 40 °C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/100 g d.w.), Mg (204 mg/100 g d.w.), Fe (9.3 mg/100 g d.w.), Zn (5 mg/100 g d.w.), and Cu (0.5 mg/100 g d.w.) were recorded in IF-BCS. L. plantarum-led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 and 56%. The results suggest L. plantarum-led lactic acid fermentation coupled with sprout blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.

11.
Bioresour Technol ; 387: 129687, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595807

RESUMEN

Caproic acid (CA) production from food waste (FW) is a promising way for waste recycling, while the fermentation processes need further exploration. In this study, FW acidogenic fermentation under different pH (uncontrolled, 4, 5, 6) using indigenous microbiota was investigated. Result showed that substrate hydrolysis, carbohydrate degradation and acidogenesis increased with the increase of pH. Although various microbial communities were observed in FW, lactic acid bacteria (Lactobacillus and Limosilactobacillus) were enriched at pH lower than 6, resulting in lactic acid accumulation. CA (88.24 mM) was produced at pH 6 accounting for 31.23% of the total product carbon. The enriched lactic acid bacteria were directionally replaced by chain elongators (Caproicibacter, Clostridium_sensu_stricto, unclassified_Ruminococcaceae) at pH 6, and carbohydrates in FW were firstly transformed into lactic acid, then to butyrate and CA through lactate-based chain elongation processes. This work provided a novel CA fermentation pathway and further enriched the FW valorization.


Asunto(s)
Lactobacillales , Microbiota , Eliminación de Residuos , Alimentos , Ácido Láctico
12.
J Food Sci ; 88(8): 3155-3188, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458298

RESUMEN

Micronutrient deficiency still occurs in sub-Saharan Africa (SSA) despite the availability of several food resources, particularly fermented foods and vegetables, with high nutritional potential. Fermentation enhances the quality of food in several aspects. Organoleptically, certain taste, aroma, and textures are developed. Health and safety are improved by inhibiting the growth of several foodborne pathogens and removing harmful toxic compounds. Furthermore, nutrition is enhanced by improving micronutrient contents and bioavailability from the food, especially vitamin B content. However, during processing and before final consumption, many fermented foods are heat treated (drying, pasteurization, cooking, etc.) to make the food digestible and safe for consumption. Heat treatment improves the bioavailability of B-vitamins in some foods. In other foods, heating decreases the nutritional value because some B-vitamins are degraded. In SSA, cooked starchy foods are often associated with vegetables in household meals. This paper reviews studies that have focused fermented starchy foods and vegetable foods in SSA with the potential to provide B-vitamins to consumers. The review also describes the process of the preparation of these foods for final consumption, and techniques that can prevent or lessen B-vitamin loss, or enrich B-vitamins prior to consumption.


Asunto(s)
Verduras , Complejo Vitamínico B , Calor , Estado Nutricional , África del Sur del Sahara , Fermentación
13.
J Food Sci Technol ; 60(8): 2244-2254, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37273560

RESUMEN

The aim of this study is the enrichment of green table olives with anthocyanins by using beetroot and black carrot in the fermentation media and to improve functional properties of fermented olives. For this purpose, a full factorial design was constructed by considering the fermentation time, vegetable type and vegetable concentration as processing factors. The changes in the chemical and microbiological properties of both olive and brine samples were monitored. During fermentation, while phenolic components of olives were transferred to the brine, the anthocyanins originating from the black carrot and beetroot diffused into both olive and brine samples. The total monomeric anthocyanin content of fermented olives containing 20% percent of black carrot and beetroot was 149.87 and 154.05 mg/kg respectively. Moreover, the color of olives turned as fermentation progressed. Both ANOVA results (p < 0.05) and PCA model (R2 = 0.99; Q2 = 0.93) confirmed that reaction time is most important factor for the fermentation process. The sensorial analysis results indicated that the olives fermented with 20% vegetable for 10 days had been highly scored by panelists. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05751-x.

14.
J Biosci Bioeng ; 136(1): 20-27, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37221113

RESUMEN

Enterococcus faecalis strain DB-5 is a lactic acid bacterium newly isolated from the Japanese mandarin orange (mikan). The DB-5 strain produces organic acid from various carbohydrate sources including glycerol and starch. To gain deeper insights into its potential application in lactic acid fermentation (LAF), the genome and fermentation analyses of E. faecalis DB-5 were performed. Whole genome sequencing was carried out using the DNBSEQ platform. After trimming and assembly, the total size of the assembled genome was revealed to be 3,048,630 bp, distributed into 63 contigs with an N50 value of 203,673. The genome has 37.2% GC content, 2928 coding DNA sequences, and 54 putative RNA genes. The DB-5 strain harbored two l-lactate dehydrogenases (L-LDHs), both of which conserved the catalytic domain sequences. The optical purity measurement showed that strain DB-5 is homofermentative and produced only l-lactic acid (LA), which correlated with genome-based pathway analysis. To confirm its LA productivity at high temperatures, open repeated batch fermentation was performed at 45 °C using sucrose as a carbon source. The volumetric LA productivity of DB-5 was averaged at 3.66 g L-1 h-1 for 24 h during the 3rd to 11th fermentation cycles. E. faecalis DB-5 could efficiently convert around 94% of sucrose to LA throughout the fermentation cycles at 45 °C. These genomic characteristics and fermentation properties of E. faecalis DB-5 provide beneficial information for a deeper understanding of the functional properties of future high-temperature LAFs from biomass resources.


Asunto(s)
Citrus , Enterococcus faecalis , Ácido Láctico , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Fermentación , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Citrus/microbiología
15.
Bioresour Technol ; 378: 128985, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001698

RESUMEN

This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 °C, 10 °C, 23 °C, 35 °C, 45 °C, and 55 °C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.2 ± 20.6 mM and 234.4 ± 38.2 mM respectively), but no negative impact on BHP (averaging at 94.6 ± 25.1 mL/gVS). Maximum hydrogen production rate for stored FW improved by at least 57%. Microbial analysis showed dominance of lactic acid bacteria (LAB) namely Lactobacillus sp., Lactococcus sp., Weisella sp., Streptococcus sp. and Bacillus sp. after LAF. Clostridium sp. emerged after DF, co-existing with LAB. Coupling LAF as a storage method was demonstrated as a novel strategy of FW management for DF, for a wide range of temperatures.


Asunto(s)
Microbiota , Eliminación de Residuos , Fermentación , Ácido Láctico/metabolismo , Alimentos , Temperatura , Hidrógeno/metabolismo
16.
Food Chem ; 415: 135789, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870213

RESUMEN

In this research, the physicochemical properties, sensory quality, and storage stability of mayonnaise prepared from egg yolk fermented for different times (0, 3, 6, and 9 h) have been investigated. Compared with control mayonnaise (3.50 µm and 92.88%), mayonnaise prepared from fermented egg yolk possessed significantly lower particle size (3.32-3.41 µm) and higher emulsion stability (97.26-98.72%). Meanwhile, texture, color, and gas chromatography-mass spectrometry (GC-MS) analysis revealed that the fermented egg yolk significantly enhanced the firmness, consistency and cohesiveness, lightness and redness, and flavor profile of mayonnaise. Sensory evaluation showed that mayonnaise with 3 h-fermented egg yolk exhibited the highest sensory scores. And the microscopic and appearance characteristics revealed that fermented egg yolk endowed mayonnaise with a more stable appearance after 30 days of storage. These results indicated that lactic acid fermentation of egg yolk is a feasible way to improve consumer acceptability and shelf life of mayonnaise.


Asunto(s)
Condimentos , Yema de Huevo , Yema de Huevo/química , Emulsiones/química , Tamaño de la Partícula
17.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36829856

RESUMEN

The growing global consumption of avocados, associated with contents including bioactive compounds with numerous health-promoting properties, is producing a large amount of agro wastes around the world. Different management approaches are available for the recovery of bioactive compounds from wastes as potential ingredients for use in the production of functional foods and nutraceuticals. Lactic acid fermentation can be used to exploit nutritional potential and add value to agro wastes. In this study, fermentations with lactic acid bacteria were carried out in avocado leaves, and the total phenolic content and the antioxidant activity were determined by DPPH and FRAP assays from hydroalcoholic extracts obtained from fermented avocado leaves. Fifteen new phenolic compounds were identified for the first time in avocado leaves by HPLC-ESI-TOF-MS. L. plantarum CECT 748T and P. pentosaceus CECT 4695T showed the highest antioxidant activity. The sum of phenolic compounds was increased by 71, 62, 55 and 21% in fermentations with P. pentosaceus CECT 4695T, L. brevis CECT 5354, P. acidilactici CECT 5765T and L. plantarum CECT 9567, respectively, while it was reduced in the fermentation with L. plantarum 748T by 21% as demonstrated by HPLC-ESI-TOF-MS. Biotransformations induced by bacterial metabolism modified the phenolic compound profile of avocado leaves in a strain-specific-dependent manner. P. pentosaceus CECT 4695T significantly increased kaempferol, P. pentosaceus 4695T, L. brevis 5354 and L. plantarum 9567 increased rutin, and dihydro-p-coumaric acid was increased by the five selected lactic acid bacteria. Total flavonoids were highly increased after fermentations with the five selected lactic acid bacteria but flavonoid glucosides were decreased by L. plantarum 748T, which was related to its higher antioxidant activity. Our results suggest that lactic acid bacteria led the hydrolysis of compounds by enzymatic activity such as glycosidases or decarboxylase and the release of phenolics bound to the plant cell wall, thus improving their bioavailability.

18.
Nutrients ; 15(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36771297

RESUMEN

Although fermentation and hydrolyzation are well-known processes to improve the bioavailability of nutrients and enable the fortification with dietary fibers, the effect of such pre-treatments on the prebiotic features of arabinoxylan-oligosaccharides (AXOS) had not been explored. The middle-term in vitro simulation through the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) demonstrated that the feeding with different formulations (namely oat bran, rye bran and wheat bran) containing hydrolyzed AXOS fermented by lactic acid bacteria significantly increased the synthesis of short-chain fatty acids (SCFA) by colon microbiota, with hydrolyzed and fermented rye bran displaying the highest effect. After two weeks from the interruption of intake, SCFA concentrations significantly decreased but remained still significantly higher compared to the original condition. The microbiome was also affected, with a significant abundance increase in Lactobacillaceae taxon after feeding with all fermented and hydrolyzed formulates. Hydrolyzed and fermented rye bran showed the highest changes. The fungal community, even if it had a lower variety compared to bacteria, was also modulated after feeding with AXOS formulations, with an increase in Candida relative abundance and a decrease in Issatchenkia. On the contrary, the intake of non-hydrolyzed and non-fermented wheat bran did not produce relevant changes of relative abundances. After two weeks from intake interruption (wash out period) such changes were mitigated, and the gut microbiome modulated again to a final structure that was more like the original condition. This finding suggests that hydrolyzed AXOS fermented by lactic acid bacteria could have a more powerful prebiotic effect compared to non-hydrolyzed and non-fermented wheat bran, shaping the colon microbiome and its metabolic answer. However, the intake should be continuous to assure persistent effects. Opening a window into the ecological evolutions and plausible underlying mechanisms, the findings reinforce the perspective to explore more in depth the use of hydrolyzed and fermented AXOS as additional ingredient for bread fortification.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Oligosacáridos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fibras de la Dieta/análisis , Prebióticos/análisis , Fermentación
19.
Biochimie ; 208: 180-185, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36638953

RESUMEN

After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.


Asunto(s)
Ácido Láctico , Neoplasias , Humanos , Ácido Láctico/metabolismo , Fermentación , Glucólisis , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Resistencia a Antineoplásicos/genética
20.
Food Chem ; 399: 133954, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007442

RESUMEN

The aim of the study was to determine the effect of osmoconcentration in a sucrose and sodium chloride solution on the efficiency of lactic fermentation and the content of polyphenols and oligosaccharides in yellow and red onion varieties: Alonso, Hysky, Hystore, and Red Lady. In most cases, no negative effect of onion dehydration was noted on the growth or number of the bacteria tested. Osmotic dehydration of onions prior to lactic fermentation may positively modify the profile of lactic acid isomers by increasing the proportion of the L (+) isomer. The use of osmotic dehydration before fermentation did not adversely affect the content of polyphenols in the onions. Simultaneously, the loss of fructo-oligosaccharides was limited: 60 % of the initial fructo-oligosaccharide content was obtained using the Alonso cultivar and Levilactobacillus brevis 0944 for onion fermentation.


Asunto(s)
Ácido Láctico , Cebollas , Fermentación , Humanos , Oligosacáridos , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA