Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(28): 6345-6355, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39251427

RESUMEN

Rapid virus identification is crucial for preventing outbreaks. The COVID-19 pandemic has highlighted the critical nature of rapid virus detection. Here, we designed a label-free electrochemical biosensor modified with gold nanoparticles (AuNPs) to detect IgG antibodies from human serum, enabling rapid point-of-care diagnostics. AuNPs were synthesized and characterized. A multivariate optimization was carried out to determine the optimal condition for functionalizing AuNPs with anti-IgG. Subsequently, using a glassy carbon electrode (GCE), a modified AuNPs/GCE electrochemical biosensor was developed for IgG detection. The results indicated that AuNPs displayed a spherical morphology with a size distribution of 19.54 nm. Additionally, the zeta potential was recorded at -7.84 mV. Central composite design (CCD) analysis determined the optimal conditions for functionalizing AuNPs to be an anti-IgG concentration of 320 µg mL-1, a temperature of 25 °C, and pH of 7.4. The characterization study confirmed the successful synthesis and functionalization of AuNPs. Through electrochemical impedance spectroscopy measurement, the biosensor demonstrated a limit of detection (LOD) of 0.2 ng mL-1 and limit of quantification (LOQ) of 0.8 ng mL-1. Furthermore, tests in real samples showed the interaction between IgG antibodies in serum samples and AuNPs/GCE, confirming the biosensor's ability to detect and quantify IgG in clinical samples.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Inmunoglobulina G , Límite de Detección , Nanopartículas del Metal , SARS-CoV-2 , Humanos , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/sangre , COVID-19/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Electrodos
2.
Biophys Rev ; 15(4): 709-719, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37681086

RESUMEN

Over the past decade, the utilization of advanced fluorescence microscopy technologies has presented numerous opportunities to study or re-investigate autofluorescent molecules and harmonic generation signals as molecular biomarkers and biosensors for in vivo cell and tissue studies. The label-free approaches benefit from the endogenous fluorescent molecules within the cell and take advantage of their spectroscopy properties to address biological questions. Harmonic generation can be used as a tool to identify the occurrence of fibrillar or lipid deposits in tissues, by using second and third-harmonic generation microscopy. Combining autofluorescence with novel techniques and tools such as fluorescence lifetime imaging microscopy (FLIM) and hyperspectral imaging (HSI) with model-free analysis of phasor plots has revolutionized the understanding of molecular processes such as cellular metabolism. These tools provide quantitative information that is often hidden under classical intensity-based microscopy. In this short review, we aim to illustrate how some of these technologies and techniques may enable investigation without the need to add a foreign fluorescence molecule that can modify or affect the results. We address some of the most important autofluorescence molecules and their spectroscopic properties to illustrate the potential of these combined tools. We discuss using them as biomarkers and biosensors and, under the lens of this new technology, identify some of the challenges and potentials for future advances in the field.

3.
Braz J Microbiol ; 54(2): 769-777, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36854899

RESUMEN

Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS-CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Inteligencia Artificial , Nasofaringe , Aprendizaje Automático , Análisis Espectral
4.
HardwareX ; 13: e00408, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923557

RESUMEN

The lack of equipped healthcare infrastructure in isolated hard-to-reach zones exposes their population to a higher risk of complications in common diseases. With a timely diagnosis setting a life-altering difference, worldwide efforts have been conducted for the development of point-of-care testing (PoCT) with cost-effective devices. Among the most common interests in PoCT is the analysis of blood smear samples, as they can help to detect, diagnose, and monitor a wide range of diseases and disorders. With microscopy being the traditional tool for these analyses, a significative advance has been the development of cost-effective digital holographic microscopy systems, driven in part by its label-free imaging capabilities that waive the need for any sample preprocessing. Here, a robust and portable digital lensless holographic microscope, functionalized for the analysis of non-preprocessed blood smear samples in PoCT environments, is presented, and its viability is tested in the observation of red blood cells. The device uses an optical fiber with a cone-shaped tip instead of a pinhole, which ensures the sturdiness of the system and eliminates the need for challenging alignment. While the distances of the microscope can be tuned before fabrication, the herein-reported operational parameters are functionalized for the specific analysis of blood samples.

5.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36551080

RESUMEN

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Nanopartículas del Metal , Oro/química , Troponina I , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Límite de Detección
6.
ACS Sens ; 7(9): 2645-2653, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36049154

RESUMEN

The quantum-rate model predicts a rate k as a frequency for transporting electrons within molecular structures, which is governed by the ratio between the quantum of conductance G and capacitance Cq, such that k = G/Cq. This frequency, as measured in a single-layer graphene appropriately modified with suitable biological receptors, can be applied as a transducer signal that ranges sensitivities within the attomole for biosensing applications. Here, we applied this label-free and reagentless biosensing transducer signal methodology for the qualitative diagnosis of COVID-19 infections, where this assay methodology was shown to be similar to the gold-standard real-time polymerase chain reaction. The quantum-rate strategy for the diagnosis of COVID-19 was performed by combining the response of the interface for detecting the S and N proteins of SARS-CoV-2 virus as accessed from nasopharyngeal/oropharyngeal patient samples with 80% of sensitivity and 77% of specificity. As a label-free and reagentless biosensing platform, the methodology is decidedly useful for point-of-care and internet-of-things biological assaying technologies, not only because of its real-time ability to measure infections but also because of the capability for miniaturization inherent in reagentless electrochemical methods. This approach effectively permits the rapid development of biological assays for surveillance and control of endemics and pandemics.


Asunto(s)
COVID-19 , Grafito , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Pandemias , SARS-CoV-2
7.
Pharmaceutics ; 14(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015341

RESUMEN

Lung cancer is, currently, one of the main malignancies causing deaths worldwide. To date, early prognostic and diagnostic markers for small cell lung cancer (SCLC) have not been systematically and clearly identified, so most patients receive standard treatment. In the present study, we combine quantitative proteomics studies and the use of magnetic core-shell nanoparticles (mCSNP's), first to identify a marker for lung cancer, and second to functionalize the nanoparticles and their possible application for early and timely diagnosis of this and other types of cancer. In the present study, we used label-free mass spectrometry in combination with an ion-mobility approach to identify 220 proteins with increased abundance in small cell lung cancer (SCLC) cell lines. Our attention was focused on cell receptors for their potential application as mCSNP's targets; in this work, we report the overexpression of Transferrin Receptor (TfR1) protein, also known as Cluster of Differentiation 71 (CD71) up to a 30-fold increase with respect to the control cell. The kinetics of endocytosis, evaluated by a flow cytometry methodology based on fluorescence quantification, demonstrated that receptors were properly activated with the transferrin supported on the magnetic core-shell nanoparticles. Our results are important in obtaining essential information for monitoring the disease and/or choosing better treatments, and this finding will pave the way for future synthesis of nanoparticles including chemotherapeutic drugs for lung cancer treatments.

8.
Front Cell Infect Microbiol ; 12: 920425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782121

RESUMEN

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Mosquitos Vectores , Proteoma , Proteómica
9.
Infect Immun ; 90(6): e0010722, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35612302

RESUMEN

The second messenger cyclic di-GMP (c-di-GMP) is a ubiquitous molecule in bacteria that regulates diverse phenotypes. Among them, motility and biofilm formation are the most studied. Furthermore, c-di-GMP has been suggested to regulate virulence factors, making it important for pathogenesis. Previously, we reported that c-di-GMP regulates biofilm formation and swimming motility in Bordetella bronchiseptica. Here, we present a multi-omics approach for the study of B. bronchiseptica strains expressing different cytoplasmic c-di-GMP levels, including transcriptome sequencing (RNA-seq) and shotgun proteomics with label-free quantification. We detected 64 proteins significantly up- or downregulated in either low or high c-di-GMP levels and 358 genes differentially expressed between strains with high c-di-GMP levels and the wild-type strain. Among them, we found genes for stress-related proteins, genes for nitrogen metabolism enzymes, phage-related genes, and virulence factor genes. Interestingly, we observed that a virulence factor like the type III secretion system (TTSS) was regulated by c-di-GMP. B. bronchiseptica with high c-di-GMP levels showed significantly lower levels of TTSS components like Bsp22, BopN, and Bcr4. These findings were confirmed by independent methods, such as quantitative reverse transcription-PCR (q-RT-PCR) and Western blotting. Higher intracellular levels of c-di-GMP correlated with an impaired capacity to induce cytotoxicity in a eukaryotic cell in vitro and with attenuated virulence in a murine model. This work presents data that support the role that the second messenger c-di-GMP plays in the pathogenesis of Bordetella.


Asunto(s)
Bordetella bronchiseptica , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Bordetella bronchiseptica/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Ratones , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Mikrochim Acta ; 189(6): 228, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610491

RESUMEN

A label-free nanoimmunosensor is reported based on p53/CeO2/PEDOT nanobiocomposite-decorated screen-printed gold electrodes (SPAuE) for the electrochemical detection of anti-p53 autoantibodies. CeO2 nanoparticles (NPs) were synthesized and stabilized with cyanopropyltriethoxysilane by a soft chemistry method. The nanoimmunosensing architecture was prepared by in situ electropolymerization of 3,4-ethylenedioxythiophene (EDOT) on SPAuE in the presence of CeO2 NPs. The CeO2 NPs and Ce/PEDOT/SPAuE were characterized by scanning and transmission electron microscopy, dynamic and electrophoretic light scattering, ultraviolet-visible spectrophotometry, X-ray diffraction, Fourier-transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Ce/PEDOT/SPAuE was biofunctionalized with p53 antigen by covalent bonding for the label-free determination of anti-p53 autoantibodies by differential pulse voltammetry. The nanobiocomposite-based nanoimmunosensor detected anti-p53 autoantibodies in a linear range from 10 to 1000 pg mL-1, with a limit of detection (LOD) of 3.2 pg mL-1. The nanoimmunosensor offered high specificity, selectivity, and long-term storage stability with great potential to detect anti-p53 autoantibodies in serum samples. Overall, incorporating organo-functional nanoparticles into polymeric matrices can provide a simple-to-assemble, rapid, and ultrasensitive approach for on-site screening of anti-p53 autoantibodies and other disease-related biomarkers with low sample volumes.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Autoanticuerpos , Técnicas Biosensibles/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes , Cerio , Nanopartículas del Metal/química , Nanocompuestos/química , Polímeros
11.
Proc Natl Acad Sci U S A ; 119(14): e2122937119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344419

RESUMEN

The bright-field (BF) optical microscope is a traditional bioimaging tool that has been recently tested for depth discrimination during evaluation of specimen morphology; however, existing approaches require dedicated instrumentation or extensive computer modeling. We report a direct method for three-dimensional (3D) imaging in BF microscopy, applicable to label-free samples, where we use Köhler illumination in the coherent regime and conventional digital image processing filters to achieve optical sectioning. By visualizing fungal, animal tissue, and plant samples and comparing with light-sheet fluorescence microscopy imaging, we demonstrate the accuracy and applicability of the method, showing how the standard microscope is an effective 3D imaging device.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Animales , Simulación por Computador , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos
12.
Talanta ; 243: 123337, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35255430

RESUMEN

ß-1,4-Galactosyltransferase-V (ß-1,4-GalT-V) is a membrane-bound glycoprotein with glycosyltransferase enzyme activity that synthesizes lactosylceramide and glycosylates high-branched N-glycans in the Golgi apparatus. Colorectal cancer (CRC) tumor cells have shown to overexpress these biomolecules concerning normal cells, releasing them into the body fluids. Thus, their detection has been suggested as a diagnosis/prognosis CRC biomarker. We report the first electrochemical immunosensor for the detection of such a novel ß-1,4-GalT-V CRC biomarker. The label-free electrochemical immunosensor covalently coupled an anti-ß-1,4-GalT-V antibody at a mixed self-assembled monolayer-coated screen-printed gold electrode (SPAuE) surface. This functionalized platform captured the ß-1,4-GalT-V glycoprotein from human serum samples with high specificity, which response monitored by electrochemical impedance spectroscopy (EIS) was protein concentration-dependent. The resultant electrochemical immunosensor showed a linear dynamic range from 5 to 150 pM, with a sensitivity of 14 Ω pM-1 and a limit of detection of 7 pM, of clinical relevance. This outstanding performance makes it great potential for including it in a biomarker signature for the early diagnosis/prognosis of CRC.


Asunto(s)
Técnicas Biosensibles , Neoplasias Colorrectales , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Neoplasias Colorrectales/diagnóstico , Técnicas Electroquímicas , Electrodos , Oro/química , Humanos , Inmunoensayo/métodos , Límite de Detección , N-Acetil-Lactosamina Sintasa
13.
Microorganisms ; 10(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056563

RESUMEN

Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.

14.
ACS Appl Mater Interfaces ; 14(1): 41-48, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932313

RESUMEN

Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 µg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 µg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 µg ZIKV/mg. The impedance LOD value was determined to be 2.76 µg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.


Asunto(s)
Alginatos/química , Compuestos de Anilina/química , Técnicas Biosensibles/métodos , Nanofibras/química , Carga Viral/métodos , Virus Zika/aislamiento & purificación , Animales , Anticuerpos Inmovilizados/inmunología , Anticuerpos Antivirales/inmunología , Sangre/virología , Chlorocebus aethiops , Técnicas Electroquímicas , Hidrogeles/química , Inmunoensayo/métodos , Límite de Detección , Células Vero , Virus Zika/inmunología
15.
Anal Bioanal Chem ; 413(19): 4873-4885, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34152457

RESUMEN

The incidence of infection by the dengue virus (DENV) has grown dramatically, reaching 128 countries in tropical and subtropical regions worldwide, with a pattern of hyper-endemicity. DENV is a mosquito-borne disease having four serotypes, one or two circulating in epidemic outbreaks. The diagnosis of DENV is challenging mainly due to the circulation of new viruses with remarkable similarities, such as Zika (ZIKV) that may cause fetal microcephaly. DENV affects 390 million people per year, but these numbers may be higher due to the underreported and misclassified cases. Recently, the NS1 nonstructural protein has been described in serum and urine of DENV and ZIKV patients, suggesting its use as a biomarker for screening since a negative NS1 sample confirms the absence of these infections. Herein, a label-free immunosensor comprising an assembled nanostructured thin film of carbon nanotube-ethylenediamine is described. The advantage of in situ electrosynthesis of polymer film is to allow major control of thickness and conductivity, in addition to designing the reactive groups for functionalization. A quartz crystal microbalance system was used to estimate the thickness of the polymeric film obtained. The anti-NS1 monoclonal antibodies were immobilized to carbon nanotubes by covalent linkage, permitting a high stability during measurements. Analytical responses to NS1 were obtained by differential pulse voltammetry (DPV), showing a linear range from 20 to 800 ng mL-1 and reproducibility of 3.0%, with a limit of detection (LOD) of 6.8 ng mL- 1. This immunosensor was capable of detecting ZIKV and DENV NS1 in spiked urine and real serum in a clinical range.Graphical abstract.


Asunto(s)
Dengue/diagnóstico , Proteínas no Estructurales Virales/sangre , Proteínas no Estructurales Virales/orina , Infección por el Virus Zika/diagnóstico , Anticuerpos Inmovilizados , Anticuerpos Antivirales , Dengue/sangre , Dengue/orina , Técnicas Electroquímicas , Glicoproteínas/sangre , Glicoproteínas/orina , Humanos , Inmunoensayo , Membranas Artificiales , Nanoestructuras , Sensibilidad y Especificidad , Pruebas Serológicas , Virus Zika/inmunología , Infección por el Virus Zika/sangre , Infección por el Virus Zika/orina
16.
Biosens Bioelectron ; 191: 113419, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34144470

RESUMEN

Rational selection of predicted peptides to be employed as templates in molecular imprinting was carried out for the heat-denatured non-structural protein 1 (NS1) of dengue virus (DENV). Conservation analysis among 301 sequences of Brazilian isolates of DENV and zika virus (ZIKV) NS1 was carried out by UniProtKB, and peptide selection was based on in silico data of the conservational, structural and immunogenic properties of the sequences. The selected peptide (from dengue 1 NS1) was synthesized and employed as a template in the electropolymerization of polyaminophenol-imprinted films on the surface of carbon screen-printed electrodes. Heat denaturation of the protein was carried out prior to analysis, in order to expose its internal hidden epitopes. After removal of the template, the molecularly imprinted cavities were able to rebind to the whole denatured protein as determined by electrochemical impedance spectroscopy. This label-free sensor was efficient to distinguish the NS1 of DENV from the NS1 of ZIKV. Additionally, the sensor was also selective for dengue NS1, in comparison with human serum immunoglobulin G and human serum albumin. Additionally, the device was able to detect the DENV NS1 at concentrations from 50 to 200 µg L-1 (RSD below 5.04%, r = 0.9678) in diluted human serum samples. The calculated LOD and LOQ were, respectively, 29.3 and 88.7 µg L-1 and each sensor could be used for six sequential cycles with the same performance.


Asunto(s)
Técnicas Biosensibles , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Anticuerpos Antivirales , Dengue/diagnóstico , Virus del Dengue/genética , Epítopos/genética , Calor , Humanos , Proteínas no Estructurales Virales/genética , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
17.
Sensors (Basel) ; 21(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066692

RESUMEN

A generalization of the concept of multimode interference sensors is presented here for the first time, to the best of our knowledge. The existing bimodal and trimodal sensors correspond to particular cases of those interference sensors. A thorough study of the properties of the multimode waveguide section provided a deeper insight into the behavior of this class of sensors, which allowed us to establish new criteria for designing more sensitive structures. Other challenges of using high-order modes within the sensing area of the device reside in the excitation of these modes and the interpretation of the output signal. To overcome these, we developed a novel structure to excite any desired high-order mode along with the fundamental mode within the sensing section, while maintaining a fine control over the power distribution between them. A new strategy to detect and interpret the output signal is also presented in detail. Finally, we designed a high-order sensor for which numerical simulations showed a theoretical limit of detection of 1.9×10-7 RIU, making this device the most sensitive multimode interference sensor reported so far.


Asunto(s)
Técnicas Biosensibles
18.
J Proteomics ; 236: 104121, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33540065

RESUMEN

The phytopathogenic fungus Chrysoporthe cubensis has a great capacity to produce highly efficient enzymes for the hydrolysis of lignocellulosic biomass. The bioinfosecretome of C. cubensis was identified by computational predictions of secreted proteins combined with protein analysis using 1D-LC-MS/MS. The in silico secretome predicted 562 putative genes capable of encoding secreted proteins, including 273 CAZymes. Proteomics analysis confirmed the existence of 313 proteins, including 137 CAZymes classified as Glycosyl Hydrolases (GH), Polysaccharide Lyases (PL), Carbohydrate Esterases (CE) and Auxiliary Activities enzymes (AA), which indicates the presence of classical and oxidative cellulolytic mechanisms. The enzymes diversity in the extract shows fungal versatility to act in complex biomasses. This study provides an insight into the lignocellulose-degradation mechanisms by C. cubensis and allows the identification of the enzymes that are potentially useful in improving industrial process of bioconversion of lignocellulose. SIGNIFICANCE: Chrysoporthe cubensis is an important deadly canker pathogen of commercially cultivated Eucalyptus species. The effective depolymerisation of the recalcitrant plant cell wall performed by this fungus is closely related to its high potential of lignocellulolytic enzymes secretion. Since the degradation of biomass occurs in nature almost exclusively by enzyme secretion systems, it is reasonable to suggest that the identification of C. cubensis lignocellulolytic enzymes is relevant in contributing to new sustainable alternatives for industrial solutions. As far as we know, this work is the first accurate proteomic evaluation of the enzymes secreted by this species of fungus. The integration of the gel-based proteomic approach, the bioinformatic prediction of the secretome and the analyses of enzymatic activity are powerful tools in the evaluation of biotechnological potential of C. cubensis in producing carbohydrate-active enzymes. In addition, analysis of the C. cubensis secretome grown in wheat bran draws attention to this plant pathogen and its extracellular enzymatic machinery, especially regarding the identification of promising new enzymes for industrial applications. The results from this work allowed for explanation and reinforce previous research that revealed C. cubensis as a strong candidate to produce enzymes to hydrolyse sugarcane bagasse and similar substrates.


Asunto(s)
Ascomicetos , Proteómica , Biomasa , Cromatografía Liquida , Hidrólisis , Espectrometría de Masas en Tándem
19.
Proteomics ; 21(7-8): e2000129, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33570822

RESUMEN

The use of plant growth-promoting bacteria as agricultural inoculants of plants should be encouraged because of their prominent role in biological nitrogen fixation, the increase of nutrient uptake by roots, abiotic stress mitigation, and disease control. The complex mechanisms underlying the association between plant and beneficial bacteria have been increasingly studied, and proteomic tools can expand our perception regarding the fundamental molecular processes modulated by the interaction. In this study, we investigated the changes in protein expression in maize roots in response to treatment with the endophytic diazotrophic Herbaspirillum seropedicae and the activities of enzymes related to nitrogen metabolism. To identify maize proteins whose expression levels were altered in the presence of bacteria, a label-free quantitative proteomic approach was employed. Using this approach, we identified 123 differentially expressed proteins, of which 34 were upregulated enzymes, in maize roots cultivated with H. seropedicae. The maize root colonization of H. seropedicae modulated the differential expression of enzymes involved in the stress response, such as peroxidases, phenylalanine ammonia-lyase, and glutathione transferase. The differential protein profile obtained in the inoculated roots reflects the effect of colonization on plant growth and development compared with control plants.


Asunto(s)
Herbaspirillum/fisiología , Proteínas de Plantas/metabolismo , Zea mays/enzimología , Zea mays/microbiología , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Proteómica , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
20.
Theriogenology ; 159: 60-68, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33113445

RESUMEN

The assessment of embryo quality aims to enhance subsequent pregnancy and live birth outcomes. Metabolic analysis of embryos has immense potential in this regard. As a step towards this goal, here we assess the metabolism of bovine embryos using label-free optical imaging. We compared embryos defined as either on-time or fast-developing, as fast dividing embryos are more likely to develop to the blastocyst stage. Specifically, bovine embryos at 48 (Day 2) and 96 (Day 4) hours post fertilization were fixed and separated based on morphological assessment: on-time (Day 2: 2 cell; Day 4: 5-7 cell) or fast-developing (Day 2: 3-7 cell; Day 4: 8-16 cell). Embryos with different developmental rates on Day 2 and Day 4 were correlated with metabolic activity and DNA damage. Confocal microscopy was used to assess metabolic activity by quantification of cellular autofluorescence specific for the endogenous fluorophores NAD(P)H and FAD with a subsequent calculation of the optical redox ratio. Separately, hyperspectral microscopy was employed to assess a broader range of endogenous fluorophores. DNA damage was determined using γH2AX immunohistochemistry. Hyperspectral imaging showed significantly lower abundance of endogenous fluorophores in fast-developing compared to on-time embryos on Day 2, indicating a lower metabolic activity. On Day 4 of development there was no difference in the abundance of FAD between on-time and fast-developing embryos. There was, however, significantly higher levels of NAD(P)H in fast-developing embryos leading to a significantly lower optical redox ratio when compared to on-time embryos. Collectively, these results demonstrate that fast-developing embryos present a 'quiet' metabolic pattern on Day 2 and Day 4 of development, compared to on-time embryos. There was no difference in the level of DNA damage between on-time and fast-developing embryos on either day of development. To our knowledge, this is the first collective use of confocal and hyperspectral imaging in cleavage-stage bovine embryos in the absence of fluorescent tags.


Asunto(s)
Blastocisto , Transferencia de Embrión , Animales , Bovinos , Transferencia de Embrión/veterinaria , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Fertilización In Vitro/veterinaria , Microscopía/veterinaria , Imagen Óptica/veterinaria , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA