Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39204088

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory autoimmune neurological disease characterized by the recurrent appearance of demyelinating lesions and progressive disability. Currently, there are multiple disease-modifying treatments, however, there is a significant need to develop new therapeutic targets, especially for the progressive forms of the disease. This review article provides an overview of the most recent studies aimed at understanding the inflammatory processes that are activated in response to the accumulation of kynurenine pathway (KP) metabolites, which exacerbate an imbalance between immune system cells (e.g., Th1, Th2, and T reg) and promote the release of pro-inflammatory interleukins that modulate different mechanisms: membrane-receptors function; nuclear factors expression; and cellular signals. Together, these alterations trigger cell death mechanisms in brain cells and promote neuron loss and axon demyelination. This hypothesis could represent a remarkable approach for disease-modifying therapies for MS. Here, we also provide a perspective on the repositioning of some already approved drugs involved in other signaling pathways, which could represent new therapeutic strategies for MS treatment.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37895892

RESUMEN

The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.

3.
Neuropharmacology ; 112(Pt B): 331-345, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26970015

RESUMEN

Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD+, which is involved in many metabolic pathways. De novo biosynthesis of NAD+ is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.


Asunto(s)
Quinurenina/metabolismo , Redes y Vías Metabólicas/fisiología , Oxidación-Reducción , Estrés Oxidativo/fisiología , Animales , Humanos
4.
Neurotoxicology ; 50: 81-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26254737

RESUMEN

The kynurenines 3-hydroxyanthranilic acid (3-HANA) and its precursor 3-hydroxykynurenine (3-HK) are metabolites derived from tryptophan degradation. 3-HK, has been related to diverse neurodegenerative diseases including Huntington's, Alzheimer's and Parkinson's diseases that share mitochondrial metabolic dysregulation. Nevertheless, the direct effect of these kynurenines on mitochondrial function has not been investigated despite it could be regulated by their redox properties that are controversial. A body of literature has suggested a ROS mediated cell death induced by 3-HK and 3-HANA. On the other hand, some works have supported that both kynurenines have antioxidant effects. Therefore, the aim of this study was to investigate 3-HK and 3-HANA effects on mitochondrial and cellular function in rat cultured cortical astrocytes (rCCA) and in animals intrastriatally injected with these kynurenines as well as to determinate the ROS role on these effects. First, we evaluated 3-HK and 3-HANA effect on cellular function, ROS production and mitochondrial membrane potential in vivo and in vitro in rCCA. Our results show that both kynurenines decreased MTT reduction in a concentration-dependent manner together with mitochondrial membrane potential. These observations were accompanied with increased cell death in rCCA and in circling behavior and morphological changes of injected animals. Interestingly, we found that ROS production was not increased in both in vitro and in vivo experiments, and accordingly lipid peroxidation (LP) was neither increased in striatal tissue of animals injected with both kynurenines. The lack of effect on these oxidative markers is in agreement with the ·OH and ONOO(-) scavenging capacity of both kynurenines detected by chemical combinatorial assays. Altogether, these data indicate that both kynurenines exert toxic effects through mechanisms that include impairment of cellular energy metabolism which are not related to early ROS production.


Asunto(s)
Ácido 3-Hidroxiantranílico/toxicidad , Depuradores de Radicales Libres/farmacología , Quinurenina/análogos & derivados , Enfermedades Mitocondriales/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Quinurenina/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Wistar , Conducta Estereotipada/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA