Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 10: 1096859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200972

RESUMEN

Background: Heart failure (HF) remains a major cause of mortality, morbidity, and poor quality of life. 44% of HF patients present impaired left ventricular ejection fraction (LVEF). Kinocardiography (KCG) technology combines ballistocardiography (BCG) and seismocardiography (SCG). It estimates myocardial contraction and blood flow through the cardiac chambers and major vessels through a wearable device. Kino-HF sought to evaluate the potential of KCG to distinguish HF patients with impaired LVEF from a control group. Methods: Successive patients with HF and impaired LVEF (iLVEF group) were matched and compared to patients with normal LVEF ≥ 50% (control). A 60 s KCG acquisition followed cardiac ultrasound. The kinetic energy from KCG signals was computed in different phases of the cardiac cycle (iKsystolic;ΔiKdiastolic) as markers of cardiac mechanical function. Results: Thirty HF patients (67 [59; 71] years, 87% male) were matched with 30 controls (64.5 [49; 73] years, 87% male). SCG ΔiKdiastolic, BCG iKsystolic, BCG ΔiKdiastolic were lower in HF than controls (p < 0.05), while SCG iKsystolic was similar. Furthermore, a lower SCG iKsystolic was associated with an increased mortality risk during follow-up. Conclusions: KINO-HF demonstrates that KCG can distinguish HF patients with impaired systolic function from a control group. These favorable results warrant further research on the diagnostic and prognostic capabilities of KCG in HF with impaired LVEF.Clinical Trial Registration: NCT03157115.

2.
Sensors (Basel) ; 21(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530417

RESUMEN

Recent years have witnessed an upsurge in the usage of ballistocardiography (BCG) and seismocardiography (SCG) to record myocardial function both in normal and pathological populations. Kinocardiography (KCG) combines these techniques by measuring 12 degrees-of-freedom of body motion produced by myocardial contraction and blood flow through the cardiac chambers and major vessels. The integral of kinetic energy (iK) obtained from the linear and rotational SCG/BCG signals, and automatically computed over the cardiac cycle, is used as a marker of cardiac mechanical function. The present work systematically evaluated the test-retest (TRT) reliability of KCG iK derived from BCG/SCG signals in the short term (<15 min) and long term (3-6 h) on 60 healthy volunteers. Additionally, we investigated the difference of repeatability with different body positions. First, we found high short-term TRT reliability for KCG metrics derived from SCG and BCG recordings. Exceptions to this finding were limited to metrics computed in left lateral decubitus position where the TRT reliability was moderate-to-high. Second, we found low-to-moderate long-term TRT reliability for KCG metrics as expected and confirmed by blood pressure measurements. In summary, KCG parameters derived from BCG/SCG signals show high repeatability and should be further investigated to confirm their use for cardiac condition longitudinal monitoring.


Asunto(s)
Balistocardiografía , Electrocardiografía , Voluntarios Sanos , Corazón , Humanos , Contracción Miocárdica , Reproducibilidad de los Resultados
3.
Biomed Eng Online ; 20(1): 3, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407507

RESUMEN

BACKGROUND: Kinocardiography (KCG) is a promising new technique used to monitor cardiac mechanical function remotely. KCG is based on ballistocardiography (BCG) and seismocardiography (SCG), and measures 12 degrees-of-freedom (DOF) of body motion produced by myocardial contraction and blood flow through the cardiac chambers and major vessels. RESULTS: The integral of kinetic energy ([Formula: see text]) obtained from the linear and rotational SCG/BCG signals was computed over each dimension over the cardiac cycle, and used as a marker of cardiac mechanical function. We tested the hypotheses that KCG metrics can be acquired using different sensors, and at 50 Hz. We also tested the effect of record length on the ensemble average on which the metrics were computed. Twelve healthy males were tested in the supine, head-down tilt, and head-up tilt positions to expand the haemodynamic states on which the validation was performed. CONCLUSIONS: KCG metrics computed on 50 Hz and 1 kHz SCG/BCG signals were very similar. Most of the metrics were highly similar when computed on different sensors, and with less than 5% of error when computed on record length longer than 60 s. These results suggest that KCG may be a robust and non-invasive method to monitor cardiac inotropic activity. Trial registration Clinicaltrials.gov, NCT03107351. Registered 11 April 2017, https://clinicaltrials.gov/ct2/show/NCT03107351?term=NCT03107351&draw=2&rank=1 .


Asunto(s)
Balistocardiografía , Hemodinámica , Procesamiento de Señales Asistido por Computador , Electrocardiografía , Corazón , Frecuencia Cardíaca , Humanos , Masculino , Monitoreo Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA