Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 19(17): e202400196, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38757478

RESUMEN

The search for better chemotherapeutic drugs to alleviate the deficiencies of existing platinum (Pt) drugs has picked up the pace in the millennium. There has been a disparate effort to design better and safer Pt drugs to deal with the problems of deactivation, Pt resistance and toxic side effects of clinical Pt drugs. In this review, we have discussed the potential of kinetically inert Pt complexes as an emerging class of next-generation Pt drugs. The introduction gives an overview about the development, use, mechanism of action and side effects of clinical Pt drugs as well as the various approaches to improve some of their pharmacological properties. We then describe the impact of kinetic lability on the pharmacology of functional Pt drugs including deactivation, antitumor efficacy, toxicity and resistance. Following a brief overview of numerous pharmacological advantages that a non-functional kinetically inert Pt complex can offer; we discussed structurally different classes of kinetically inert Pt (II) complexes highlighting their unique pharmacological features.


Asunto(s)
Antineoplásicos , Neoplasias , Compuestos Organoplatinos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Humanos , Neoplasias/tratamiento farmacológico , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cinética , Estructura Molecular , Platino (Metal)/química , Platino (Metal)/farmacología
2.
Chemistry ; 30(33): e202400570, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38597334

RESUMEN

Kinetic inertness of Mn(II)-based MRI contrast agents can be improved by increasing the rigidity of the polydentate ligand that tightly coordinate the metal ion. Taking inspiration from the remarkable increase in kinetic inertness of [Mn(CDTA)]2- compared to [Mn(EDTA)]2- due to the cyclohexyl backbone rigidity, we devised that bicyclic ligands would further improve the kinetic inertness of the Mn(II) complexes. The length of the alkyl bridge on the cyclohexane ring was varied from methylene (BCH-DTA), ethylene (BCO-DTA) to propylene (BCN-DTA) to evaluate the influence of the different trans-diaminotetraacetate ligands on relaxometric, thermodynamic and kinetic properties of the Mn(II) complexes. 1H and 17O NMR relaxometric studies showed a slight increase in relaxivity and a faster water exchange rate in these Mn(II)-complexes with respect to [Mn(CDTA)]2-. Solution studies revealed that the conditional stability (pMn) and dissociation half-life (t1/2) at pH 7.4 follow the order [Mn(BCH-DTA)]2-<[Mn(BCO-DTA)]2-<[Mn(BCN-DTA)]2- highlighting the effect of the bridge length on the overall stability of the Mn(II) complexes. Remarkably, [Mn(BCN-DTA)]2- shows an improved pMn value and a 7-times higher kinetic inertness than [Mn(CDTA)]2-. NMR studies on the Zn(II) analogues confirm the rigidity of the bicyclic complexes with an isomerization process at >313 K for the smaller bridged complex [Zn(BCH-DTA)]2-.

3.
Angew Chem Int Ed Engl ; 62(38): e202303958, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37314332

RESUMEN

Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt-sensitive as well as Pt-resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Cinética , Línea Celular Tumoral
4.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175174

RESUMEN

Al(III) complexes have been recently investigated for their potential use in imaging with positron emission tomography (PET) by formation of ternary complexes with the radioisotope fluorine-18 (18F). Although the derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) are the most applied chelators for [Al18F]2+ labelling and (pre)clinical PET imaging, non-macrocyclic, semi-rigid pentadentate chelators having two N- and three O-donor atoms such as RESCA1 and AMPDA-HB have been proposed with the aim to allow room temperature labelling of temperature-sensitive biomolecules. The paucity of stability data on Al(III) complexes used for PET imaging instigated a complete thermodynamic and kinetic solution study on Al(III) complexes with aminomethylpiperidine (AMP) derivatives AMPTA and AMPDA-HB and the comparison with a RESCA1-like chelator CD3A-Bn (trans-1,2-diaminocyclohexane-N-benzyl-N,N',N'-triacetic acid). The stability constant of [Al(AMPDA-HB)] is about four orders of magnitude higher than that of [Al(AMPTA)] and [Al(CD3A-Bn)], highlighting the greater affinity of phenolates with respect to acetate O-donors. On the other hand, the kinetic inertness of the complexes, determined by following the Cu2+-mediated transmetallation reactions in the 7.5-10.5 pH range, resulted in a spontaneous and hydroxide-assisted dissociation slightly faster for [Al(AMPTA)] than for the other two complexes (t1/2 = 4.5 h for [Al(AMPTA)], 12.4 h for [Al(AMPDA-HB)], and 24.1 h for [Al(CD3A-Bn)] at pH 7.4 and 25 °C). Finally, the [AlF]2+ ternary complexes were prepared and their stability in reconstituted human serum was determined by 19F NMR experiments.

5.
Pharmaceutics ; 14(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36297549

RESUMEN

89Zr represents a highly favorable positron emitter for application in immuno-PET (Positron Emission Tomography) imaging. Clinically, the 89Zr4+ ion is introduced into antibodies by complexation with desferrioxamine B. However, producing complexes of limited kinetic inertness. Therefore, several new chelators for 89Zr introduction have been developed over the last years. Of these, the direct comparison of the most relevant ones for clinical translation, DFO* and 3,4,3-(LI-1,2-HOPO), is still missing. Thus, we directly compared DFO with DFO* and 3,4,3-(LI-1,2-HOPO) immunoconjugates to identify the most suitable agent stable 89Zr-complexation. The chelators were introduced into cetuximab, and an optical analysis method was developed, enabling the efficient quantification of derivatization sites per protein. The cetuximab conjugates were efficiently obtained and radiolabeled with 89Zr at 37 °C within 30 min, giving the [89Zr]Zr-cetuximab derivatives in high radiochemical yields and purities of >99% as well as specific activities of 50 MBq/mg. The immunoreactive fraction of all 89Zr-labeled cetuximab derivatives was determined to be in the range of 86.5−88.1%. In vivo PET imaging and ex vivo biodistribution studies in tumor-bearing animals revealed a comparable and significantly higher kinetic inertness for both [89Zr]Zr-3,4,3-(LI-1,2-HOPO)-cetuximab and [89Zr]Zr-DFO*-cetuximab, compared to [89Zr]Zr-DFO-cetuximab. Of these, [89Zr]Zr-DFO*-cetuximab showed a considerably more favorable pharmacokinetic profile with significantly lower liver and spleen retention than [89Zr]Zr-3,4,3-(LI-1,2-HOPO)-cetuximab. Since [89Zr]Zr-DFO* demonstrates a very high kinetic inertness, paired with a highly favorable pharmacokinetic profile of the resulting antibody conjugate, DFO* currently represents the most suitable chelator candidate for stable 89Zr-radiolabeling of antibodies and clinical translation.

6.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011290

RESUMEN

The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for clinical diagnosis and disease management. In order to better understand the issues associated with GBCA administration and gadolinium retention and deposition in the human brain, the chemical properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the human brain. Although it is possible that there is a water-soluble form of gadolinium that has high relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could have high relaxivities on the surface of the solid due to higher water access. This review assesses the safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties, discusses how these properties influence in vivo behavior, and highlights some clinical implications regarding the development of future imaging agents.


Asunto(s)
Fenómenos Químicos , Medios de Contraste/efectos adversos , Medios de Contraste/química , Gadolinio/química , Animales , Gadolinio DTPA/química , Humanos , Cinética , Imagen por Resonancia Magnética/métodos , Estructura Molecular , Termodinámica
7.
Angew Chem Int Ed Engl ; 59(29): 11958-11963, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32298021

RESUMEN

The search for more biocompatible alternatives to Gd3+ -based MRI agents, and the interest in 52 Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+ , high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A-EA have dissociation half-lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm-1 s-1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1 . Additionally, L1 could be radiolabeled with 52 Mn and the complex revealed good stability in biological media.

8.
Chemistry ; 25(16): 4184-4193, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30620106

RESUMEN

The new ligand HPDO3MA [(R,R,R,R)-10-(2-hydroxypropyl)-α,α',α''-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid] was designed to combine and optimize the chemical properties of the macrocyclic ligands HPDO3A and DOTMA. The presence of the methyl groups on the acetic pendant arms of HPDO3A is expected to rigidify the structure of the ligand and favor an increase of the kinetic inertness of the Ln complexes. 1 H NMR spectra of Eu(HPDO3MA) displayed the presence of two pairs of diastereoisomers: SAP (square antiprismatic) and TSAP (twisted square antiprismatic) isomers (56 and 44 %, respectively). In addition, 1 H and 17 O relaxometric NMR studies of Gd(HPDO3MA) showed approximately a 10 % increase in relaxivity and a faster water exchange rate with respect to Gd(HPDO3A). Moreover, a detailed chemical exchange saturation transfer (CEST) characterization of Yb(HPDO3MA) displayed a sensitivity about two times larger than that of Yb(HPDO3A) both in phantom and in cell labeling experiments. Finally, the kinetic inertness of Yb(HPDO3MA) was measured to be twice as high as that of Yb(HPDO3A), with a dissociation half-life at physiological pH of about 2500 years.

9.
J Inorg Biochem ; 127: 53-61, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850669

RESUMEN

Stability constants of the complexes formed between the natural trihydroxamic acids desferrioxamine B (DFB) and desferricoprogen (DFC) with Nd(III), Gd(III) and Yb(III) ions were determined using pH-potentiometry. The equilibrium in these systems can be described by models containing mononuclear protonated (Ln(HL), Ln(H2L) and Ln(H3L)), deprotonated (LnL) and ternary hydroxo Ln(H-1L) complexes, but for both ligands dinuclear complexes of low stability were also detected. The stability constants for the Ln(HDFB)(+) complexes are 11.95 (Nd(III)), 13.16 (Gd(III)) and 14.67 (Yb(III)), while these values of the Ln(DFC) complexes are considerably higher (14.42 (Nd(III)), 15.14 (Gd(III)) and 16.49 (Yb(III))). The stability constants of the complexes of DFB and DFC are much lower than those of the Ln(L)3 complexes formed with some aromatic hydroxamic acids indicating that the relatively long spacer between the hydroxamic acid moieties in DFB and DFC is unfavorable for Ln(III) complexation. The relaxometric study conducted for the Gd(HDFB)(+) species revealed an interesting pH dependence of the relaxivity associated with a large hydration number (bishydrated complex) and fast water exchange (kex=(29.9±0.4)×10(6)s(-1)), which would be favorable for CA use. However the dissociation of Gd(HDFB)(+) is fairly fast (<2ms) under all conditions employed in the present work thus the kinetically labile Gd(HDFB)(+) is not suitable for in vivo CA applications. Some low stability ternary complexes were also detected with K(Gd(HDFB)(HCO3))=17.5±1.9 and K(Gd(HDFB)(Lactate))=8.4±3.2 but in the presence of citrate and phosphate ions the Gd(HDFB)(+) complex was found to dissociate.


Asunto(s)
Complejos de Coordinación/química , Deferoxamina/química , Dicetopiperazinas/química , Ácidos Hidroxámicos/química , Elementos de la Serie de los Lantanoides/química , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA