Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2306480120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725645

RESUMEN

Kinesin-5 motor proteins play essential roles during mitosis in most organisms. Their tetrameric structure and plus-end-directed motility allow them to bind to and move along antiparallel microtubules, thereby pushing spindle poles apart to assemble a bipolar spindle. Recent work has shown that the C-terminal tail is particularly important to kinesin-5 function: The tail affects motor domain structure, ATP hydrolysis, motility, clustering, and sliding force measured for purified motors, as well as motility, clustering, and spindle assembly in cells. Because previous work has focused on presence or absence of the entire tail, the functionally important regions of the tail remain to be identified. We have therefore characterized a series of kinesin-5/Cut7 tail truncation alleles in fission yeast. Partial truncation causes mitotic defects and temperature-sensitive growth, while further truncation that removes the conserved BimC motif is lethal. We compared the sliding force generated by cut7 mutants using a kinesin-14 mutant background in which some microtubules detach from the spindle poles and are pushed into the nuclear envelope. These Cut7-driven protrusions decreased as more of the tail was truncated, and the most severe truncations produced no observable protrusions. Our observations suggest that the C-terminal tail of Cut7p contributes to both sliding force and midzone localization. In the context of sequential tail truncation, the BimC motif and adjacent C-terminal amino acids are particularly important for sliding force. In addition, moderate tail truncation increases midzone localization, but further truncation of residues N-terminal to the BimC motif decreases midzone localization.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinesinas/genética , Huso Acromático/genética , Microtúbulos , Alelos , Ciclo Celular , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
2.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655493

RESUMEN

Kinesin-5 motors are essential to separate mitotic spindle poles and assemble a bipolar spindle in many organisms. These motors crosslink and slide apart antiparallel microtubules via microtubule plus-end-directed motility. However, kinesin-5 localization is enhanced away from antiparallel overlaps. Increasing evidence suggests this localization occurs due to bidirectional motility or trafficking. The purified fission-yeast kinesin-5 protein Cut7 moves bidirectionally, but bidirectionality has not been shown in cells, and the function of the minus-end-directed movement is unknown. Here, we characterized the motility of Cut7 on bipolar and monopolar spindles and observed movement toward both plus- and minus-ends of microtubules. Notably, the activity of the motor increased at anaphase B onset. Perturbations to microtubule dynamics only modestly changed Cut7 movement, whereas Cut7 mutation reduced movement. These results suggest that the directed motility of Cut7 contributes to the movement of the motor. Comparison of the Cut7 mutant and human Eg5 (also known as KIF11) localization suggest a new hypothesis for the function of minus-end-directed motility and spindle-pole localization of kinesin-5s.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Anafase , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo
3.
Comput Struct Biotechnol J ; 20: 4305-4314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051882

RESUMEN

Kinesins are microtubule-based motor proteins that play important roles ranging from intracellular transport to cell division. Human Kinesin-5 (Eg5) is essential for mitotic spindle assembly during cell division. By combining molecular dynamics (MD) simulations with other multi-scale computational approaches, we systematically studied the interaction between Eg5 and the microtubule. We find the electrostatic feature on the motor domains of Eg5 provides attractive interactions to the microtubule. Additionally, the folding and binding energy analysis reveals that the Eg5 motor domain performs its functions best when in a weak acidic environment. Molecular dynamics analyses of hydrogen bonds and salt bridges demonstrate that, on the binding interfaces of Eg5 and the tubulin heterodimer, salt bridges play the most significant role in holding the complex. The salt bridge residues on the binding interface of Eg5 are mostly positive, while salt bridge residues on the binding interface of tubulin heterodimer are mostly negative. Such salt bridge residue distribution is consistent with electrostatic potential calculations. In contrast, the interface between α and ß-tubulins is dominated by hydrogen bonds rather than salt bridges. Compared to the Eg5/α-tubulin interface, the Eg5/ß-tubulin interface has a greater number of salt bridges and higher occupancy for salt bridges. This asymmetric salt bridge distribution may play a significant role in Eg5's directionality. The residues involved in hydrogen bonds and salt bridges are identified in this work and may be helpful for anticancer drug design.

4.
Cells ; 11(14)2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35883587

RESUMEN

Accurate chromosome segregation depends on bipolar chromosome-microtubule attachment and tension generation on chromosomes. Incorrect chromosome attachment results in chromosome missegregation, which contributes to genome instability. The kinetochore is a protein complex that localizes at the centromere region of a chromosome and mediates chromosome-microtubule interaction. Incorrect chromosome attachment leads to checkpoint activation to prevent anaphase onset. Kinetochore detachment activates the spindle assembly checkpoint (SAC), while tensionless kinetochore attachment relies on both the SAC and tension checkpoint. In budding yeast Saccharomyces cerevisiae, kinesin-5 motor proteins Cin8 and Kip1 are needed to separate spindle pole bodies for spindle assembly, and deletion of CIN8 causes lethality in the absence of SAC. To study the function of Cin8 and Kip1 in chromosome segregation, we constructed an auxin-inducible degron (AID) mutant, cin8-AID. With this conditional mutant, we first confirmed that cin8-AID kip1∆ double mutants were lethal when Cin8 is depleted in the presence of auxin. These cells arrested in metaphase with unseparated spindle pole bodies and kinetochores. We further showed that the absence of either the SAC or tension checkpoint was sufficient to abolish the cell-cycle delay in cin8-AID mutants, causing chromosome missegregation and viability loss. The tension checkpoint-dependent phenotype in cells with depleted Cin8 suggests the presence of tensionless chromosome attachment. We speculate that the failed spindle pole body separation in cin8 mutants could increase the chance of tensionless syntelic chromosome attachments, which depends on functional tension checkpoint for survival.


Asunto(s)
Segregación Cromosómica/genética , Cinesinas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Dineínas/genética , Ácidos Indolacéticos/metabolismo , Cinesinas/genética , Cinetocoros/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Chromosoma ; 131(1-2): 87-105, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35437661

RESUMEN

Timely and accurate centrosome separation is critical for bipolar spindle organization and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is essential for centrosome separation and spindle organization in somatic cells; however, the detailed functions and mechanisms of Eg5 in spermatocytes remain unclear. In this study, we show that Eg5 proteins are located at spindle microtubules and centrosomes in spermatocytes both in vivo and in vitro. We reveal that the spermatocytes are arrested at metaphase I in seminiferous tubules after Eg5 inhibition. Eg5 ablation results in cell cycle arrest, the formation of monopolar spindle, and chromosome misalignment in cultured GC-2 spd cells. Importantly, we find that the long-term inhibition of Eg5 results in an increased number of centrosomes and chromosomal instability in spermatocytes. Our findings indicate that Eg5 mediates centrosome separation to control spindle assembly and chromosome alignment in spermatocytes, which finally contribute to chromosome stability and faithful cell division of the spermatocytes.


Asunto(s)
Cinesinas , Huso Acromático , Centrosoma/metabolismo , Humanos , Cinesinas/genética , Masculino , Microtúbulos/metabolismo , Espermatocitos , Huso Acromático/metabolismo
6.
Biosci Biotechnol Biochem ; 86(2): 254-259, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34864879

RESUMEN

Kinesin-5 family proteins are essential for bipolar spindle assembly to ensure mitotic fidelity. Here, we demonstrate evolutionary functional conservation of kinesin-5 between human and fission yeast. Human Eg5 expressed in the nucleus replaces fission yeast counterpart Cut7. Intriguingly, Eg5 overproduction results in cytotoxicity. This phenotype provides a useful platform for the development of novel kinesin-5 inhibitors as anticancer drugs.


Asunto(s)
Schizosaccharomyces
7.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387192

RESUMEN

In this study, we analyzed intracellular functions and motile properties of neck-linker (NL) variants of the bi-directional S. cerevisiae kinesin-5 motor, Cin8. We also examined - by modeling - the configuration of H-bonds during NL docking. Decreasing the number of stabilizing H-bonds resulted in partially functional variants, as long as a conserved backbone H-bond at the N-latch position (proposed to stabilize the docked conformation of the NL) remained intact. Elimination of this conserved H-bond resulted in production of a non-functional Cin8 variant. Surprisingly, additional H-bond stabilization of the N-latch position, generated by replacement of the NL of Cin8 by sequences of the plus-end directed kinesin-5 Eg5, also produced a nonfunctional variant. In that variant, a single replacement of N-latch asparagine with glycine, as present in Cin8, eliminated the additional H-bond stabilization and rescued the functional defects. We conclude that exact N-latch stabilization during NL docking is critical for the function of bi-directional kinesin-5 Cin8.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Cinesinas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Enlace de Hidrógeno , Cinesinas/química , Cinesinas/clasificación , Cinesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo
8.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360622

RESUMEN

Kinesin-5 motor consists of two pairs of heads and tail domains, which are situated at the opposite ends of a common stalk. The two pairs of heads can bind to two antiparallel microtubules (MTs) and move on the two MTs independently towards the plus ends, sliding apart the two MTs, which is responsible for chromosome segregation during mitosis. Prior experimental data showed that the tails of kinesin-5 Eg5 can modulate the dynamics of single motors and are critical for multiple motors to generate high steady forces to slide apart two antiparallel MTs. To understand the molecular mechanism of the tails modulating the ability of Eg5 motors, based on our proposed model the dynamics of the single Eg5 with the tails and that without the tails moving on single MTs is studied analytically and compared. Furthermore, the dynamics of antiparallel MT sliding by multiple Eg5 motors with the tails and that without the tails is studied numerically and compared. Both the analytical results for single motors and the numerical results for multiple motors are consistent with the available experimental data.


Asunto(s)
Cinesinas/fisiología , Microtúbulos/fisiología , Modelos Moleculares
9.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203964

RESUMEN

Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.


Asunto(s)
Espacio Intracelular/metabolismo , Cinesinas/metabolismo , Animales , Humanos , Cinesinas/química , Microtúbulos/metabolismo , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Huso Acromático/metabolismo
10.
Cell Mol Life Sci ; 78(16): 6051-6068, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34274977

RESUMEN

Two modes of motility have been reported for bi-directional kinesin-5 motors: (a) context-dependent directionality reversal, a mode in which motors undergo persistent minus-end directed motility at the single-molecule level and switch to plus-end directed motility in different assays or under different conditions, such as during MT gliding or antiparallel sliding or as a function of motor clustering; and (b) bi-directional motility, defined as movement in two directions in the same assay, without persistent unidirectional motility. Here, we examine how modulation of motor-microtubule (MT) interactions affects these two modes of motility for the bi-directional kinesin-5, Cin8. We report that the large insert in loop 8 (L8) within the motor domain of Cin8 increases the MT affinity of Cin8 in vivo and in vitro and is required for Cin8 intracellular functions. We consistently found that recombinant purified L8 directly binds MTs and L8 induces single Cin8 motors to behave according to context-dependent directionality reversal and bi-directional motility modes at intermediate ionic strength and according to a bi-directional motility mode in an MT surface-gliding assay under low motor density conditions. We propose that the largely unstructured L8 facilitates flexible anchoring of Cin8 to the MTs. This flexible anchoring enables the direct observation of bi-directional motility in motility assays. Remarkably, although L8-deleted Cin8 variants exhibit a strong minus-end directed bias at the single-molecule level, they also exhibit plus-end directed motility in an MT-gliding assay. Thus, L8-induced flexible MT anchoring is required for bi-directional motility of single Cin8 molecules but is not necessary for context-dependent directionality reversal of Cin8 in an MT-gliding assay.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Movimiento/fisiología , Saccharomyces cerevisiae/metabolismo
11.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34080632

RESUMEN

Radial microtubule (MT) arrays or asters determine cell geometry in animal cells. Multiple asters interacting with motors, such as those in syncytia, form intracellular patterns, but the mechanical principles behind this are not clear. Here, we report that oocytes of the marine ascidian Phallusia mammillata treated with the drug BI-D1870 spontaneously form cytoplasmic MT asters, or cytasters. These asters form steady state segregation patterns in a shell just under the membrane. Cytaster centers tessellate the oocyte cytoplasm, that is divide it into polygonal structures, dominated by hexagons, in a kinesin-5-dependent manner, while inter-aster MTs form 'mini-spindles'. A computational model of multiple asters interacting with kinesin-5 can reproduce both tessellation patterns and mini-spindles in a manner specific to the number of MTs per aster, MT lengths and kinesin-5 density. Simulations predict that the hexagonal tessellation patterns scale with increasing cell size, when the packing fraction of asters in cells is ∼1.6. This self-organized in vivo tessellation by cytasters is comparable to the 'circle packing problem', suggesting that there is an intrinsic mechanical pattern-forming module that is potentially relevant to understanding the role of collective mechanics of cytoskeletal elements in embryogenesis. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cinesinas , Microtúbulos , Animales , Tamaño de la Célula , Citoplasma , Oocitos
12.
Dev Cell ; 56(9): 1253-1267.e10, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33910056

RESUMEN

Proper chromosome segregation into two future daughter cells requires the mitotic spindle to elongate in anaphase. However, although some candidate proteins are implicated in this process, the molecular mechanism that drives spindle elongation in human cells is unknown. Using combined depletion and inactivation assays together with CRISPR technology to explore redundancy between multiple targets, we discovered that the force-generating mechanism of spindle elongation consists of EG5/kinesin-5 together with the PRC1-dependent motor KIF4A/kinesin-4, with contribution from kinesin-6 and kinesin-8. Disruption of EG5 and KIF4A leads to total failure of chromosome segregation due to blocked spindle elongation, despite poleward chromosome motion. Tubulin photoactivation, stimulated emission depletion (STED), and expansion microscopy show that perturbation of both proteins impairs midzone microtubule sliding without affecting microtubule stability. Thus, two mechanistically distinct sliding modules, one based on a self-sustained and the other on a crosslinker-assisted motor, power the mechanism that drives spindle elongation in human cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Anafase , Segregación Cromosómica , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo
13.
Biophys Chem ; 271: 106548, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486269

RESUMEN

Kinesin-5 and kinesin-1 proteins are two families of kinesin superfamily molecular motors that can move processively on microtubules powered by ATP hydrolysis. Kinesin-1 is a unidirectional motor. By contrast, some yeast kinesin-5 motors are bidirectional and the directionality can be switched by changing the experimental conditions. Here, on the basis of a common chemomechanical coupling model, the dynamics of kinesin-1 and in particular the dynamics of kinesin-5 is studied theoretically, explaining the available experimental data. For example, the experimental data about different movement directions under different experimental conditions for kinesin-5 are explained well. The origin of why kinesin-1 can only make unidirectional movement and kinesin-5 can make bidirectional movements is revealed. The origin of mutations or deletions of several structural elements affecting the directionality of kinesin-5 is revealed. Moreover, some predicted results for kinesin-5 are provided.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cinesinas/metabolismo , Modelos Biológicos , Adenosina Trifosfato/química , Cinesinas/química
14.
Front Cell Infect Microbiol ; 10: 583812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154955

RESUMEN

Kinesin-5 motors play essential roles in spindle apparatus assembly during cell division, by generating forces to establish and maintain the spindle bipolarity essential for proper chromosome segregation. Kinesin-5 is largely conserved structurally and functionally in model eukaryotes, but its role is unknown in the Plasmodium parasite, an evolutionarily divergent organism with several atypical features of both mitotic and meiotic cell division. We have investigated the function and subcellular location of kinesin-5 during cell division throughout the Plasmodium berghei life cycle. Deletion of kinesin-5 had little visible effect at any proliferative stage except sporozoite production in oocysts, resulting in a significant decrease in the number of motile sporozoites in mosquito salivary glands, which were able to infect a new vertebrate host. Live-cell imaging showed kinesin-5-GFP located on the spindle and at spindle poles during both atypical mitosis and meiosis. Fixed-cell immunofluorescence assays revealed kinesin-5 co-localized with α-tubulin and centrin-2 and a partial overlap with kinetochore marker NDC80 during early blood stage schizogony. Dual-color live-cell imaging showed that kinesin-5 is closely associated with NDC80 during male gametogony, but not with kinesin-8B, a marker of the basal body and axonemes of the forming flagella. Treatment of gametocytes with microtubule-specific inhibitors confirmed kinesin-5 association with nuclear spindles and not cytoplasmic axonemal microtubules. Altogether, our results demonstrate that kinesin-5 is associated with the spindle apparatus, expressed in proliferating parasite stages, and important for efficient production of infectious sporozoites.


Asunto(s)
Cinesinas , Esporozoítos , Animales , Segregación Cromosómica , Cinesinas/genética , Masculino , Microtúbulos , Plasmodium berghei , Huso Acromático
15.
J Cell Sci ; 133(12)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32501288

RESUMEN

Xeroderma Pigmentosum D (XPD, also known as ERCC2) is a multi-functional protein involved in transcription, DNA repair and chromosome segregation. In Drosophila, Xpd interacts with Crumbs (Crb) and Galla to regulate mitosis during embryogenesis. It is unknown how these proteins are linked to mitosis. Here, we show that Crb, Galla-2 and Xpd regulate nuclear division in the syncytial embryo by interacting with Klp61F, the Drosophila mitotic Kinesin-5 associated with bipolar spindles. Crb, Galla-2 and Xpd physically interact with Klp61F and colocalize to mitotic spindles. Knockdown of any of these proteins results in similar mitotic defects. These phenotypes are restored by overexpression of Klp61F, suggesting that Klp61F is a major effector. Mitotic defects of galla-2 RNAi are suppressed by Xpd overexpression but not vice versa. Depletion of Crb, Galla-2 or Xpd results in a reduction of Klp61F levels. Reducing proteasome function restores Klp61F levels and suppresses mitotic defects caused by knockdown of Crb, Galla-2 or Xpd. Furthermore, eye growth is regulated by Xpd and Klp61F. Hence, we propose that Crb, Galla-2 and Xpd interact to maintain the level of Klp61F during mitosis and organ growth.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas de Drosophila/genética , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Mitosis
16.
Future Med Chem ; 12(12): 1137-1154, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32513026

RESUMEN

Background: Dihydropyrimidin-2-thiones (DHPMs) are a class of heterocyclic compound which have been intensively investigated mainly due to their anticancer activity as kinesin Eg5 inhibitors. Materials & methods: A library of N1 aryl substituted DHPMs were tested against glioma and bladder cancer cell lines. Quantitative structure-activity relationship (QSAR) investigation was performed in order to identify key elements of DHPMs linked with their antiproliferative effect. The toxicity of most active compounds was investigated using Caenorhabditis elegans as the model. Results & conclusion: DHPMs 9, 13 and 17 have been identified as having improved activity against glioma and bladder cell lines as compared with monastrol. Flow cytometry investigations showed that the new compounds induce cell cycle arrest in phase G2/M and cell death by apoptosis. In addition, compound 13 was able to modulate the reactive oxygen species production in vivo in C. elegans. The biphenyl dihydropyrimidinthiones provided a safety profile in C. elegans.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Cinesinas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Cinesinas/metabolismo , Ligandos , Estructura Molecular , Picratos/antagonistas & inhibidores , Relación Estructura-Actividad Cuantitativa , Especies Reactivas de Oxígeno/metabolismo
17.
Cell Div ; 15: 6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32165913

RESUMEN

BACKGROUND: Microtubule organization is essential for bipolar spindle assembly and chromosome segregation, which contribute to genome stability. Kinesin-5 Eg5 is known to be a crucial regulator in centrosome separation and spindle assembly in mammalian somatic cells, however, the functions and mechanisms of Eg5 in male meiotic cell division remain largely unknown. RESULTS: In this study, we have found that Eg5 proteins are expressed in mouse spermatogonia, spermatocytes and spermatids. After Eg5 inhibition by specific inhibitors Monastrol, STLC and Dimethylenastron, the meiotic spindles of dividing spermatocytes show spindle collapse and the defects in bipolar spindle formation. We demonstrate that Eg5 regulates spindle bipolarity and the maintenance of meiotic spindles in meiosis. Eg5 inhibition leads to monopolar spindles, spindle abnormalities and chromosome misalignment in cultured GC-2 spd cells. Furthermore, Eg5 inhibition results in the decrease of the spermatids and the abnormalities in mature sperms. CONCLUSIONS: Our results have revealed an important role of kinesin-5 Eg5 in male meiosis and the maintenance of male fertility. We demonstrate that Eg5 is crucial for bipolar spindle assembly and chromosome alignment in dividing spermatocytes. Our data provide insights into the functions of Eg5 in meiotic spindle assembly of dividing spermatocytes.

18.
Elife ; 92020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31958056

RESUMEN

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Hidrólisis , Cinesinas/química , Cinesinas/ultraestructura , Cinética , Unión Proteica , Dominios Proteicos , Huso Acromático/metabolismo
19.
Curr Biol ; 29(22): 3825-3837.e3, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679937

RESUMEN

Separation of duplicated spindle poles is the first step in forming the mitotic spindle. Kinesin-5 crosslinks and slides anti-parallel microtubules (MTs), but it is unclear how these two activities contribute to the first steps in spindle formation. In this study, we report that in monopolar spindles, the duplicated spindle poles snap apart in a fast and irreversible step that produces a nascent bipolar spindle. Using mutations in Kinesin-5 that inhibit microtubule sliding, we show that the fast, irreversible pole separation is primarily driven by microtubule crosslinking. Electron tomography revealed microtubule pairs in monopolar spindles have short overlaps that intersect at high angles and are unsuited for ensemble Kinesin-5 sliding. However, maximal extension of a subset of anti-parallel microtubule pairs approaches the length of nascent bipolar spindles and is consistent with a Kinesin-5 crosslinking-driven transition. Nonetheless, microtubule sliding by Kinesin-5 contributes to stabilizing the nascent spindle and setting its stereotyped equilibrium length.


Asunto(s)
Cinesinas/genética , Cinesinas/metabolismo , Huso Acromático/fisiología , Ciclo Celular/genética , Microtúbulos/metabolismo , Microtúbulos/fisiología , Mitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Polos del Huso/genética , Polos del Huso/fisiología
20.
Cell Struct Funct ; 44(2): 113-119, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31474649

RESUMEN

Every organism has a different set of genes essential for its viability. This indicates that an organism can become tolerant to the loss of an essential gene under certain circumstances during evolution, via the manifestation of 'masked' alternative mechanisms. In our quest to systematically uncover masked mechanisms in eukaryotic cells, we developed an extragenic suppressor screening method using haploid spores deleted of an essential gene in the fission yeast Schizosaccharomyces pombe. We screened for the 'bypass' suppressors of lethality of 92 randomly selected genes that are essential for viability in standard laboratory culture conditions. Remarkably, extragenic mutations bypassed the essentiality of as many as 20 genes (22%), 15 of which have not been previously reported. Half of the bypass-suppressible genes were involved in mitochondria function; we also identified multiple genes regulating RNA processing. 18 suppressible genes were conserved in the budding yeast Saccharomyces cerevisiae, but 13 of them were non-essential in that species. These trends suggest that essentiality bypass is not a rare event and that each organism may be endowed with secondary or backup mechanisms that can substitute for primary mechanisms in various biological processes. Furthermore, the robustness of our simple spore-based methodology paves the way for genome-scale screening.Key words: Schizosaccharomyces pombe, extragenic suppressor screening, bypass of essentiality (BOE), cut7 (kinesin-5), hul5 (E3 ubiquitin ligase).


Asunto(s)
Genes Fúngicos/genética , Schizosaccharomyces/genética , Genes Esenciales/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA