Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiome ; 19(1): 69, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261912

RESUMEN

BACKGROUND: The ancient kauri (Agathis australis) dominated forests of Aotearoa New Zealand are under threat from a multitude of ecological disturbances such as forest fragmentation, biodiversity loss, climate change, and the spread of the virulent soil pathogen Phytophthora agathidicida. Taking a wider ecosystem-level approach, our research aimed to explore the impacts of forest disturbance and disease outbreaks on the biosynthetic potential and taxonomic diversity of the kauri soil microbiome. We explored the diversity of secondary metabolite biosynthetic gene clusters (BGCs) in soils from a range of kauri forests that varied according to historical disturbance and dieback expression. To characterise the diversity of microbial BGCs, we targeted the non-ribosomal peptide synthetase (NRPS) and polyketide synthetase (PKS) gene regions for sequencing using long-read PacBio® HiFi sequencing. Furthermore, the soil bacterial and fungal communities of each forest were characterized using 16 S rRNA and ITS gene region sequencing. RESULTS: We identified a diverse array of naturally occurring microbial BGCs in the kauri forest soils, which may offer promising targets for the exploration of secondary metabolites with anti-microbial activity against P. agathidicida. We detected differences in the number and diversity of microbial BGCs according to forest disturbance history. Notably, soils associated with the most undisturbed kauri forest had a higher number and diversity of microbial NRPS-type BGCs, which may serve as a potential indicator of natural levels of microbiome resistance to pathogen invasion. CONCLUSIONS: By linking patterns in microbial biosynthetic diversity to forest disturbance history, this research highlights the need for us to consider the influence of ecological disturbances in potentially predisposing forests to disease by impacting the wider health of forest soil ecosystems. Furthermore, by identifying the range of microbial BGCs present at a naturally high abundance in kauri soils, this research contributes to the future discovery of natural microbial compounds that may potentially enhance the disease resilience of kauri forests. The methodological approaches used in this study highlight the value of moving beyond a taxonomic lens when examining the response of microbial communities to ecosystem disturbance and the need to develop more functional measures of microbial community resilience to invasive plant pathogens.

2.
Data Brief ; 51: 109791, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053586

RESUMEN

Agathis australis (New Zealand kauri) is a significant and iconic native tree of Aotearoa New Zealand. Currently, Phytophthora agathidicida that causes kauri-dieback disease is killing kauri trees. Only 1% of the New Zealand virgin kauri forest remains [1,2]. Recent studies revealed that many soil-borne microorganisms had been found to systemically boost the defensive capacity of the trees by providing competition to pathogens for nutrient intake, thus preventing pathogen colonization and modulating plant immunity [3,4]. In addition, the root microbiome consists of an entire complex rhizosphere-associated microbes with their genetic elements and interactions that have influenced plant health. To date, very few studies have been conducted to investigate the microorganisms in the kauri soil and possible environmental drivers. To characterize the functional gene profile in relation to soil microbial diversity of the kauri trees at Auckland Botanic Gardens (ABG), Auckland, New Zealand the GeoChip 5.0 M (Glomics Inc. USA), a microarray-based metagenomics tool, was used. GeoChip 5.0 M comprises of 162,000 probes from 365,000 target genes (coding DNA sequence - CDS), which covers all taxonomic groups (archaea, bacteria, fungi, protists, algae, and viruses) [5]. The ABG has kauri trees that are approximately 20 years old, located in three distinct man-made environments: Native Forest, Kauri Grove, and Rose Garden. We selected two trees from the Native Forest and two from the Kauri Grove for our experiment. Soil samples were collected from the four cardinal points of each tree, at 10 cm depth. Pooled environmental DNA was sent to Glomics (USA) and the data were preprocessed using GeoChip data analysis pipeline described in http://www.ou.edu/ieg/tools/data-analysispipeline.html. Based on the GeoChip data generated from the soil samples, we have detected a total of 946 genes, 4342 taxa, 102 phyla, and 995 genera. The data presented here provide an overview of functional genes associated with kauri soil, which can serve as baseline for other kauri soil microbiome analysis at forest-scale studies. The raw data has been uploaded to Mendeley Data https://doi.org/10.17632/T22NNN385K.1.

3.
Mol Ecol Resour ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37208988

RESUMEN

Phytophthora agathidicida is a virulent soil pathogen of Aotearoa New Zealand's iconic kauri tree species (Agathis australis (D. Don) Lindl.) and the primary causal agent of kauri dieback disease. To date, only a few control options are available to treat infected kauri that are expressing symptoms of dieback disease. Previous research has identified strains of Penicillium and Burkholderia that inhibited the mycelial growth of P. agathidicida in vitro. However, the mechanisms of inhibition remain unknown. By performing whole genome sequencing, we screened the genomes of four Penicillium and five Burkholderia strains to identify secondary metabolite encoding biosynthetic gene clusters (SM-BGCs) that may be implicated in the production of antimicrobial compounds. We identified various types of SM-BGCs in the genome of each strain, including polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), and terpenes. Across all four of the Penicillium strains, five SM-BGCs were detected that encoded the biosynthesis of napthopyrone, clavaric acid, pyranonigrin E, dimethyl coprogen and asperlactone. Across all five of the Burkholderia strains, three SM-BGCs were detected that encoded the biosynthesis of ornibactin, pyochelin and pyrrolnitin. Our analysis detected numerous SM-BGCs which could not be characterised. Further efforts should be made to identify the compounds encoded by these SM-BGCs so that we can explore their antimicrobial potential. The potential inhibitory effects of the compounds encoded by the SM-BGCs identified in this study may be worthy of further investigation for their effect on the growth and virulence of P. agathidicida.

4.
Front Microbiol ; 13: 1038444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406440

RESUMEN

Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.

5.
FEMS Microbes ; 2: xtab016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37334227

RESUMEN

Phytophthora species cause disease and devastation of plants in ecological and horticultural settings worldwide. A recently identified species, Phytophthoraagathidicida, infects and ultimately kills the treasured kauri trees (Agathis australis) that are endemic to New Zealand. Currently, there are few options for managing kauri dieback disease. In this study, we sought to assess the efficacy of the oomycide oxathiapiprolin against several life cycle stages of two geographically distinct P. agathidicida isolates. The effective concentration to inhibit 50% of mycelial growth (EC50) was determined to be ∼0.1 ng/ml, indicating that P. agathidicida mycelia are more sensitive to oxathiapiprolin than those from most other Phytophthora species that have been studied. Oxathiapiprolin was also highly effective at inhibiting the germination of zoospores (EC50 = 2-9 ng/ml for the two isolates) and oospores (complete inhibition at 100 ng/ml). In addition, oxathiapiprolin delayed the onset of detached kauri leaf infection in a dose-dependent manner. Collectively, the results presented here highlight the significant potential of oxathiapiprolin as a tool to aid in the control of kauri dieback disease.

6.
Mol Plant Pathol ; 21(9): 1131-1148, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638523

RESUMEN

New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing-based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant-pathogen interactions in gymnosperm forest trees, including kauri.


Asunto(s)
Araucariaceae/parasitología , Genoma/genética , Interacciones Huésped-Patógeno , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Proteínas/metabolismo , Araucariaceae/inmunología , Cycadopsida/inmunología , Cycadopsida/parasitología , Nueva Zelanda , Filogenia , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/parasitología , Proteínas/genética , Interferencia de ARN , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/parasitología
7.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179899

RESUMEN

Globally, the conversion of primary forests to plantations and agricultural landscapes is a common land use change. Kauri (Agathis australis) is one of the most heavily impacted indigenous tree species of New Zealand with <1% of primary forest remaining as fragments adjacent to pastoral farming and exotic forest plantations. By contrasting two forest systems, we investigated if the fragmentation of kauri forests and introduction of pine plantations (Pinus radiata) are significantly impacting the diversity and composition of soil microbial communities across Waipoua kauri forest, New Zealand. Using next generation based 16S rRNA and ITS gene region sequencing, we identified that fungal and bacterial community composition significantly differed between kauri and pine forest soils. However, fungal communities displayed the largest differences in diversity and composition. This research revealed significant shifts in the soil microbial communities surrounding remnant kauri fragments, including the loss of microbial taxa with functions in disease suppression and plant health. Kauri dieback disease, caused by Phytophthora agathidicida, currently threatens the kauri forest ecosystem. Results from this research highlight the need for further investigations into how changes to soil microbial diversity surrounding remnant kauri fragments impact tree health and disease expression.


Asunto(s)
Pinus , Ecosistema , Bosques , Nueva Zelanda , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
8.
Front Microbiol ; 8: 1340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769905

RESUMEN

Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi, which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida, which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta, we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi. Additionally, we present here the first published protocol for producing zoospores from P. agathidicida, which will aid in the further study of this emerging pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA