Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Br J Pharmacol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294926

RESUMEN

BACKGROUND AND PURPOSE: Ulinastatin has beneficial effects in patients undergoing coronary artery bypass grafting (CABG) surgery due to its anti-inflammatory properties, but the underlying mechanism remains unclear. EXPERIMENTAL APPROACH: We used samples from patients undergoing CABG, a model of cardiac ischaemia-reperfusion injury (IRI) in mice and murine cardiac endothelial cell cultures to investigate links between ulinastatin, the kallikrein-kinin system (KKS), endothelial dysfunction and cardiac inflammation in the response to ischaemia/reperfusion injury (IRI). These links were assessed using clinical investigations, in vitro and in vivo experiments and RNA sequencing analysis. KEY RESULTS: Ulinastatin inhibited the activity of tissue kallikrein, a key enzyme of the KKS, at 24 h after CABG surgery, which was verified in our murine cardiac ischaemia-reperfusion model. Under normal conditions, ulinastatin only inhibited kallikrein activity but did not affect bradykinin (B1/B2) receptors. Ulinastatin protected against IRI, in vivo and in vitro, by suppressing activation of the kallikrein-kinin system and down-regulating B1/B2 receptor-related signalling pathways including ERK/ iNOS, which resulted in enhanced endothelial barrier function, mitigation of inflammation and oedema, decreased infarct size, improved cardiac function and decreased mortality. Inhibition of kallikrein and knockdown of B1, but not B2 receptors prevented ERK translocation into the nucleus, reducing reperfusion-induced injury in murine cardiac endothelial cells. CONCLUSIONS AND IMPLICATIONS: Treatment with ulinastatin exerts a protective influence on cardiac reperfusion by suppressing activation of the kallikrein-kinin system. Our findings highlight the potential of targeting kallikrein /bradykinin receptors to alleviate endothelial dysfunction, thus improving cardiac IRI.

2.
Adv Exp Med Biol ; 1460: 919-954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287877

RESUMEN

Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing ß-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.


Asunto(s)
COVID-19 , Síndrome de Activación Macrofágica , Obesidad , SARS-CoV-2 , Humanos , COVID-19/virología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/complicaciones , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/epidemiología , Obesidad/virología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Síndrome de Activación Macrofágica/virología , Síndrome de Activación Macrofágica/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/virología , Diabetes Mellitus Tipo 2/metabolismo , Pandemias , MicroARNs/genética , MicroARNs/metabolismo , Citocinas/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología
3.
J Thromb Haemost ; 22(9): 2562-2575, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897387

RESUMEN

BACKGROUND: Factor (F)XII triggers contact activation by binding to foreign surfaces, with the epidermal growth factor-like 1 (EGF-1) domain being the primary binding site. Blocking FXII surface-binding might hold therapeutic value to prevent medical device-induced thrombosis. OBJECTIVES: To unravel and prevent EGF-1-mediated FXII surface-binding with a variable domain of heavy chain-only antibody (VHH). METHODS: FXII variants with glutamine substitutions of 2 positively charged amino acid patches within the EGF-1 domain were created. Their role in FXII contact activation was assessed using kaolin pull-down experiments, amidolytic activity assays, and clotting assays. FXII EGF-1 domain-specific VHHs were raised to inhibit EGF-1-mediated FXII contact activation while preserving quiescence. RESULTS: Two unique, positively charged patches in the EGF-1 domain were identified (upstream, 73K74K76K78H81K82H; downstream, 87K113K). Neutralizing the charge of both patches led to a 99% reduction in FXII kaolin binding, subsequent decrease in autoactivation of 94%, and prolongation of clot formation in activated partial thromboplastin time assays from 36 (±2) to 223 (±13) seconds. Three FXII EGF-1-specific VHHs were developed that are capable of inhibiting kaolin binding and subsequent contact system activation in plasma. The most effective VHH "F2" binds the positively charged patches and thereby dose-dependently extends activated partial thromboplastin time clotting times from 29 (±2) to 43 (±3) seconds without disrupting FXII quiescence. CONCLUSION: The 2 unique, positively charged patches in FXII EGF-1 cooperatively mediate FXII surface-binding, making both patches crucial for contact activation. Targeting these with FXII EGF-1-specific VHHs can exclusively decrease FXII surface-binding and subsequent contact activation, while preserving zymogen quiescence. These patches thus have potential as druggable targets in preventing medical device-induced thrombosis.


Asunto(s)
Coagulación Sanguínea , Factor de Crecimiento Epidérmico , Factor XII , Unión Proteica , Anticuerpos de Dominio Único , Humanos , Factor XII/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Anticuerpos de Dominio Único/inmunología , Sitios de Unión , Factor de Crecimiento Epidérmico/metabolismo , Dominios Proteicos , Trombosis/prevención & control , Trombosis/inmunología , Trombosis/sangre , Relación Estructura-Actividad
4.
J Neuroinflammation ; 21(1): 155, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872149

RESUMEN

Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.


Asunto(s)
Calicreína Plasmática , Recuperación de la Función , Animales , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Masculino , Calicreína Plasmática/antagonistas & inhibidores , Calicreína Plasmática/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Trombosis , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Inflamación
5.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792081

RESUMEN

Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.


Asunto(s)
Biomarcadores , Carboxipeptidasas , Senescencia Celular , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Biomarcadores/metabolismo , Carboxipeptidasas/metabolismo , Carboxipeptidasas/genética , Precalicreína/metabolismo , Precalicreína/genética , Bradiquinina/farmacología , Bradiquinina/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/citología , Células Cultivadas , Quininógeno de Alto Peso Molecular/metabolismo , Transducción de Señal , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Calicreínas/metabolismo , Calicreínas/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38734778

RESUMEN

Hereditary angioedema (HAE) due to C1-inhibitor deficiency is a rare, debilitating, genetic disorder characterized by recurrent, unpredictable, attacks of edema. The clinical symptoms of HAE arise from excess bradykinin generation due to dysregulation of the plasma kallikrein-kinin system (KKS). A quantitative systems pharmacology (QSP) model that mechanistically describes the KKS and its role in HAE pathophysiology was developed based on HAE attacks being triggered by autoactivation of factor XII (FXII) to activated FXII (FXIIa), resulting in kallikrein production from prekallikrein. A base pharmacodynamic model was constructed and parameterized from literature data and ex vivo assays measuring inhibition of kallikrein activity in plasma of HAE patients or healthy volunteers who received lanadelumab. HAE attacks were simulated using a virtual patient population, with attacks recorded when systemic bradykinin levels exceeded 20 pM. The model was validated by comparing the simulations to observations from lanadelumab and plasma-derived C1-inhibitor clinical trials. The model was then applied to analyze the impact of nonadherence to a daily oral preventive therapy; simulations showed a correlation between the number of missed doses per month and reduced drug effectiveness. The impact of reducing lanadelumab dosing frequency from 300 mg every 2 weeks (Q2W) to every 4 weeks (Q4W) was also examined and showed that while attack rates with Q4W dosing were substantially reduced, the extent of reduction was greater with Q2W dosing. Overall, the QSP model showed good agreement with clinical data and could be used for hypothesis testing and outcome predictions.

7.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728878

RESUMEN

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Asunto(s)
Apoptosis , Bradiquinina , Degeneración del Disco Intervertebral , Núcleo Pulposo , Estrés Oxidativo , Ratas Sprague-Dawley , terc-Butilhidroperóxido , Animales , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología , Núcleo Pulposo/metabolismo , terc-Butilhidroperóxido/toxicidad , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/patología , Humanos , Masculino , Bradiquinina/farmacología , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Células Cultivadas , Receptor de Bradiquinina B2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Microesferas , Transducción de Señal/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad
8.
J Transl Med ; 22(1): 388, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671481

RESUMEN

BACKGROUND: The kallikrein-kinin system is a key regulatory cascade involved in blood pressure maintenance, hemostasis, inflammation and renal function. Currently, approved drugs remain limited to the rare disease hereditary angioedema. However, growing interest in this system is indicated by an increasing number of promising drug candidates for further indications. METHODS: To provide an overview of current drug development, a two-stage literature search was conducted between March and December 2023 to identify drug candidates with targets in the kallikrein-kinin system. First, drug candidates were identified using PubMed and Clinicaltrials.gov. Second, the latest publications/results for these compounds were searched in PubMed, Clinicaltrials.gov and Google Scholar. The findings were categorized by target, stage of development, and intended indication. RESULTS: The search identified 68 drugs, of which 10 are approved, 25 are in clinical development, and 33 in preclinical development. The three most studied indications included diabetic retinopathy, thromboprophylaxis and hereditary angioedema. The latter is still an indication for most of the drug candidates close to regulatory approval (3 out of 4). For the emerging indications, promising new drug candidates in clinical development are ixodes ricinus-contact phase inhibitor for thromboprophylaxis and RZ402 and THR-149 for the treatment of diabetic macular edema (all phase 2). CONCLUSION: The therapeutic impact of targeting the kallikrein-kinin system is no longer limited to the treatment of hereditary angioedema. Ongoing research on other diseases demonstrates the potential of therapeutic interventions targeting the kallikrein-kinin system and will provide further treatment options for patients in the future.


Asunto(s)
Descubrimiento de Drogas , Sistema Calicreína-Quinina , Humanos , Sistema Calicreína-Quinina/fisiología , Desarrollo de Medicamentos , Animales
9.
Brain Res ; 1822: 148669, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951562

RESUMEN

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Asunto(s)
Barrera Hematoencefálica , Bradiquinina , Adhesión Celular , Malaria Cerebral , Malaria Falciparum , Plasmodium falciparum , Humanos , Bradiquinina/metabolismo , Adhesión Celular/fisiología , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Eritrocitos/parasitología , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Monocitos/fisiología , Plasmodium falciparum/fisiología , Barrera Hematoencefálica/fisiopatología
10.
J Clin Med ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068351

RESUMEN

Background: Hereditary angioedema (HAE) is a severe and potentially life-threatening disease. The most common forms are caused by variants in SERPING1, resulting in C1-inhibitor (C1-INH) deficiency (HAE-C1-INH). C1-INH is a serine protease inhibitor (SERPIN) that regulates multiple proteases pathways, including the kallikrein-kinin system (KKS) and its complement. In HAE-C1-INH patients, C1-INH deficiencies affect KKS control, resulting in the development of kallikrein activity in plasma and the subsequent release of bradykinin (BK). While the overwhelming majority of disease-causing SERPING1 variants are dominant, very few recessive variants have been described. We present a large Brazilian HAE-C1-INH family with a recessive form of HAE-C1-INH. Methods: Blood samples of family members were investigated for protein levels of C1-INH, C4, C1q, and C1-INH function. The SERPING1 gene was sequenced. Results: In two severely affected sisters, we identified a homozygous missense variant in SERPING1 (NM_000062.3:c.964G>A;p.Val322Met). Fourteen family members were asymptomatic heterozygous carriers of the variant. Data regarding C1-INH function in the plasma showed that homozygous p.Val322Met strongly impacts C1-INH function to inhibit C1s and kallikrein (PKa). When heterozygously expressed, it affects the C1-INH control of C1s more than that of PKa. Conclusions: These studies of the variant's effects on the structure-function relationship reinforce prior observations suggesting that C1-INH deficiency is a conformational disease.

11.
Front Immunol ; 14: 1255292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965347

RESUMEN

Background: Conestat alfa (ConA), a recombinant human C1 inhibitor, may prevent thromboinflammation. Methods: We conducted a randomized, open-label, multi-national clinical trial in which hospitalized adults at risk for progression to severe COVID-19 were assigned in a 2:1 ratio to receive either 3 days of ConA plus standard of care (SOC) or SOC alone. Primary and secondary endpoints were day 7 disease severity on the WHO Ordinal Scale, time to clinical improvement within 14 days, and safety, respectively. Results: The trial was prematurely terminated because of futility after randomization of 84 patients, 56 in the ConA and 28 in the control arm. At baseline, higher WHO Ordinal Scale scores were more frequently observed in the ConA than in the control arm. On day 7, no relevant differences in the primary outcome were noted between the two arms (p = 0.11). The median time to defervescence was 3 days, and the median time to clinical improvement was 7 days in both arms (p = 0.22 and 0.56, respectively). Activation of plasma cascades and endothelial cells over time was similar in both groups. The incidence of adverse events (AEs) was higher in the intervention arm (any AE, 30% with ConA vs. 19% with SOC alone; serious AE, 27% vs. 15%; death, 11% vs. 0%). None of these were judged as being related to the study drug. Conclusion: The study results do not support the use of ConA to prevent COVID-19 progression. Clinical trial registration: https://clinicaltrials.gov, identifier NCT04414631.


Asunto(s)
COVID-19 , Trombosis , Adulto , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Células Endoteliales , Inflamación
12.
J Clin Med ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834856

RESUMEN

The kallikrein-kinin system (KKS) contributes to vascular inflammation and neovascularization in age-related macular degeneration (AMD), particularly via the kinin B1 receptor (B1R). The aim of the present study was to determine the protective effects of the topical administration of the B1R antagonist (R-954) on inflammation, neovascularization, and retinal dysfunction in a murine model of neovascular AMD. Choroidal neovascularization (CNV) was induced in C57BL6 mice using an argon laser. A treatment with ocular drops of R-954 (100 µg/15 µL, twice daily in both eyes), or vehicle, was started immediately on day 0, for 7, 14, or 21 days. CNV, invasive microglia, and B1R immunoreactive glial cells, as well as electroretinography alterations, were observed within the retina and choroid of the CNV group but not in the control group. The staining of B1R was abolished by R-954 treatment as well as the proliferation of microglia. R-954 treatment prevented the CNV development (volume: 20 ± 2 vs. 152 ± 5 × 104 µm3 in R-954 vs. saline treatment). R-954 also significantly decreased photoreceptor and bipolar cell dysfunction (a-wave amplitude: -47 ± 20 vs. -34 ± 14 µV and b-wave amplitude: 101 ± 27 vs. 64 ± 17 µV in R-954 vs. saline treatment, day 7) as well as angiogenesis tufts in the retina. These results suggest that self-administration of R-954 by eye-drop treatment could be a promising therapy in AMD to preserve retinal health and vision.

13.
J Hazard Mater ; 458: 132044, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451104

RESUMEN

Atmospheric particulate matter (PM) perturbs hematological homeostasis by targeting the plasma kallikrein-kinin system (KKS), causing a cascade of zymogen activation events. However, the causative components involved in PM-induced hematological effects are largely unknown. Herein, the standard reference materials (SRMs) of atmospheric PM, including emissions from the diesel (2975), urban (1648a), and bituminous coal (2693), were screened for their effects on plasma KKS activation, and the effective constituent contributing to PM-induced KKS activation was further explored by fraction isolation and chemical analysis. The effects of three SRMs on KKS activation followed the order of 2975 > 1648a > 2693, wherein the fractions of 2975 isolated by acetone and water, together with the insoluble particulate residues, exerted significant perturbations in the hematological homeostasis. The soot contents in the SRMs and corresponding isolated fractions matched well with their hematological effects, and the KKS activation could be dependent on the soot surface oxidation degree. This study, for the first time, uncovered the soot content in atmospheric PM with different origins contributed to the distinct effects on plasma KKS activation. The finding would be of utmost importance for the health risk assessment on inhaled airborne fine PM, given its inevitable contact with human circulatory system.


Asunto(s)
Contaminantes Atmosféricos , Sistema Calicreína-Quinina , Material Particulado , Humanos , Sistema Calicreína-Quinina/fisiología , Hollín , Contaminantes Atmosféricos/análisis
14.
Front Physiol ; 14: 1146834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288434

RESUMEN

Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.

15.
Surg Neurol Int ; 14: 76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895235

RESUMEN

Background: A previous report suggested that functional status does not differ between patients who received tranexamic acid and those who received placebo within the early hours of intracerebral hemorrhage (ICH). Our pilot study tested the hypothesis that 2 weeks administration of tranexamic acid would contribute to functional improvement. Methods: Consecutive patients with ICH were administered 250 mg tranexamic acid 3 times a day continuously for 2 weeks. We also enrolled historical control consecutive patients. We collected clinical data that involved hematoma size, level of consciousness, and Modified Rankin Scale (mRS) scores. Results: Univariate analysis showed that the mRS score on day 90 was better in the administration group (P = 0.0095). The mRS scores on the day of death or discharge suggested a favorable effect of the treatment (P = 0.0678). Multivariable logistic regression analysis also showed that the treatment was associated with good mRS scores on day 90 (odds ratio [OR] = 2.81, 95% confidence interval [CI]: 1.10-7.21, P = 0.0312). In contrast, ICH size was associated with poor mRS scores on day 90 (OR = 0.92, 95% CI: 0.88-0.97, P = 0.0005). After propensity score matching, there was no difference in the outcomes between the two groups. We did not detect mild and serious adverse events. Conclusion: The study could not show the significant effect of 2 weeks administration of tranexamic acid on functional outcomes of ICH patients after the matching; however, suggested that this treatment is at least safe and feasible. A larger and adequately powered trial is needed.

16.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978790

RESUMEN

Prenatal alcohol exposure (PAE) impairs fetal development. Alcohol consumption was shown to modulate the renin-angiotensin system (RAS). This study aimed to analyze the effects of PAE on the expression of the renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) peptide systems in the hippocampus and heart of mice of both sexes. C57Bl/6 mice were exposed to alcohol during pregnancy at a concentration of 10% (v/v). On postnatal day 45 (PN45), mouse hippocampi and left ventricles (LV) were collected and processed for messenger RNA (mRNA) expression of components of the RAS and KKS. In PAE animals, more pronounced expression of AT1 and ACE mRNAs in males and a restored AT2 mRNA expression in females were observed in both tissues. In LV, increased AT2, ACE2, and B2 mRNA expressions were also observed in PAE females. Furthermore, high levels of H2O2 were observed in males from the PAE group in both tissues. Taken together, our results suggest that modulation of the expression of these peptidergic systems in PAE females may make them less susceptible to the effects of alcohol.

17.
J Thromb Haemost ; 21(6): 1567-1579, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36863563

RESUMEN

BACKGROUND: During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES: The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS: FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS: FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION: FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.


Asunto(s)
Factor XII , Trombosis , Humanos , Animales , Ratones , Factor XII/metabolismo , Precalicreína/metabolismo , Polifosfatos , Células HEK293 , Factor XI/metabolismo , Factor XIIa/metabolismo
18.
J Thromb Haemost ; 21(2): 237-254, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36700498

RESUMEN

BACKGROUND: Severe high-molecular-weight kininogen (HK) deficiency is a poorly studied autosomal recessive contact system defect caused by pathogenic, biallelic KNG1 variants. AIM: We performed the first comprehensive analysis of diagnostic, clinical, genetic, and epidemiological aspects of HK deficiency. METHODS: We collected clinical information and blood samples from a newly detected HK-deficient individual and from published cases identified by a systematic literature review. Activity and antigen levels of coagulation factors were determined. Genetic analyses of KNG1 and KLKB1 were performed by Sanger sequencing. The frequency of HK deficiency was estimated considering truncating KNG1 variants from GnomAD. RESULTS: We identified 48 cases of severe HK deficiency (41 families), of these 47 have been previously published (n = 19 from gray literature). We genotyped 3 cases and critically appraised 10 studies with genetic data. Ten HK deficiency-causing variants (one new) were identified. All of them were truncating mutations, whereas the only known HK amino acid substitution with a relevant phenotype instead causes hereditary angioedema. Conservative estimates suggest an overall prevalence of severe HK deficiency of approximately one case per 8 million population, slightly higher in Africans. Individuals with HK deficiency appeared asymptomatic and had decreased levels of prekallikrein and factor XI, which could lead to misdiagnosis. CONCLUSION: HK deficiency is a rare condition with only few known pathogenic variants. It has an apparently good prognosis but is prone to misdiagnosis. Our understanding of its clinical implications is still limited, and an international prekallikrein and HK deficiency registry is being established to fill this knowledge gap.


Asunto(s)
Quininógeno de Alto Peso Molecular , Precalicreína , Quininógeno de Alto Peso Molecular/genética , Quininógeno de Alto Peso Molecular/metabolismo , Precalicreína/genética , Precalicreína/metabolismo , Prevalencia , Factores de Coagulación Sanguínea
19.
Front Pharmacol ; 14: 1287487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38178859

RESUMEN

Background: The kallikrein kinin system (KKS) is an established pharmacological target for the treatment and prevention of attacks in hereditary angioedema (HAE). Proteolytic activities of FXIIa and single-chain Factor XII (FXII) zymogen contribute to KKS activation and thereby may play roles in both initiating and propagating HAE attacks. In this report, we investigated the effects of potent small molecule FXIIa inhibitors on FXIIa and single chain FXII enzymatic activities, KKS activation, and angioedema in mice. Methods: We examined the effects of 29 structurally distinct FXIIa inhibitors on enzymatic activities of FXIIa and a mutant single chain FXII with R334A, R343A and R353A substitutions (rFXII-T), that does not undergo zymogen conversion to FXIIa, using kinetic fluorogenic substrate assays. We examined the effects of a representative FXIIa inhibitor, KV998086, on KKS activation and both carrageenan- and captopril-induced angioedema in mice. Results: FXIIa inhibitors designed to target its catalytic domain also potently inhibited the enzymatic activity of rFXII-T and the pIC50s of these compounds linearly correlated for rFXIIa and rFXII-T (R 2 = 0.93). KV998086, a potent oral FXIIa inhibitor (IC50 = 7.2 nM) inhibited dextran sulfate (DXS)-stimulated generation of plasma kallikrein and FXIIa, and the cleavage of high molecular weight kininogen (HK) in human plasma. KV998086 also inhibited rFXII-T mediated HK cleavage (p < 0.005) in plasma from FXII knockout mice supplemented with rFXII-T and stimulated with polyphosphate or DXS. Orally administered KV998086 protected mice from 1) captopril-induced Evans blue leakage in colon and laryngotracheal tissues and 2) blocked carrageenan-induced plasma HK consumption and paw edema. Conclusion: These findings show that small molecule FXIIa inhibitors, designed to target its active site, also inhibit the enzymatic activity of FXII zymogen. Combined inhibition of FXII zymogen and FXIIa may thereby suppress both the initiation and amplification of KKS activation that contribute to hereditary angioedema attacks and other FXII-mediated diseases.

20.
J Cardiovasc Thorac Res ; 14(3): 159-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398053

RESUMEN

Introduction: The tissue kallikrein-kinin system is an endogenous homeostatic pathway, which its stimulation is associated with cardioprotection. The present study aimed to determine the effect of exercise training on plasma tissue kallikrein (TK) and bradykinin (BK) and their association with cardiac hypertrophy. Methods: 22 non-athlete and 22 athlete women were exposed to acute (Bruce test) and chronic (12-week swimming training) exercises. 2D echocardiography was used to evaluate morphological and functional features of the heart. Plasma concentrations of TK and BK were quantified by ELISA. Results: Athletes had significantly higher values of left ventricle end-diastolic diameter index (LVEDDI) and left ventricle mass index (LVMI) than non-athletes. Exercise intervention affected echocardiographic features in neither of the study groups. Chronic exercise training notably increased plasma levels of TK and BK, which increase was more pronounced in the athletes. Plasma TK negatively correlated with LVEDDI (r=-0.64, P=0.036 and r=-0.58, P=0.027) and LVMI (r=-0.51, P=0.032 and r=-0.63, P=0.028) in the non-athlete and athlete groups. In opposition, there was a positive correlation between plasma TK and left ventricle ejection fraction in non-athletes (r=0.39, P=0.049) and athletes (r=0.53, P=0.019). Conclusion: The upregulation of the tissue kallikrein-kinin system may be a protective mechanism against excessive cardiac hypertrophy induced by chronic exercise training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA