Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioeng Transl Med ; 8(4): e10514, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37476056

RESUMEN

Plasmodium falciparum (Pf) malaria continues to cause considerable morbidity and mortality worldwide. The circumsporozoite protein (CSP) is a particularly attractive candidate for designing vaccines that target sporozoites-the first vertebrate stage in a malaria infection. Current PfCSP-based vaccines, however, do not include epitopes that have recently been shown to be the target of potent neutralizing antibodies. We report the design of a SpyCatcher-mi3-nanoparticle-based vaccine presenting multiple copies of a chimeric PfCSP (cPfCSP) antigen that incorporates these important "T1/junctional" epitopes as well as a reduced number of (NANP)n repeats. cPfCSP-SpyCatcher-mi3 was immunogenic in mice eliciting high and durable IgG antibody levels as well as a balanced antibody response against the T1/junctional region and the (NANP)n repeats. Notably, the antibody concentration elicited by immunization was significantly greater than the reported protective threshold defined in a murine challenge model. Refocusing the immune response toward functionally relevant subdominant epitopes to induce a more balanced and durable immune response may enable the design of a more effective second generation PfCSP-based vaccine.

2.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34788599

RESUMEN

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Epítopos/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/inmunología , Vacunas de ADN/inmunología , Traslado Adoptivo , Animales , Anticuerpos Antiprotozoarios/metabolismo , Modelos Animales de Enfermedad , Epítopos/genética , Ingeniería Genética , Humanos , Evasión Inmune , Inmunogenicidad Vacunal , Ratones , Ratones SCID , Proteínas Protozoarias/genética , Relación Estructura-Actividad , Vacunación
3.
Vaccines (Basel) ; 9(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803622

RESUMEN

The most advanced malaria vaccine, RTS,S, includes the central repeat and C-terminal domains of the Plasmodium falciparum circumsporozoite protein (PfCSP). We have recently isolated human antibodies that target the junctional region between the N-terminal and repeat domains that are not included in RTS,S. Due to the fact that these antibodies protect against malaria challenge in mice, their epitopes could be effective vaccine targets. Here, we developed immunogens displaying PfCSP junctional epitopes by genetic fusion to either the N-terminus or B domain loop of the E2 protein from chikungunya (CHIK) alphavirus and produced CHIK virus-like particles (CHIK-VLPs). The structural integrity of these junctional-epitope-CHIK-VLP immunogens was confirmed by negative-stain electron microscopy. Immunization of these CHIK-VLP immunogens reduced parasite liver load by up to 95% in a mouse model of malaria infection and elicited better protection than when displayed on keyhole limpet hemocyanin, a commonly used immunogenic carrier. Protection correlated with PfCSP serum titer. Of note, different junctional sequences elicited qualitatively different reactivities to overlapping PfCSP peptides. Overall, these results show that the junctional epitopes of PfCSP can induce protective responses when displayed on CHIK-VLP immunogens and provide a basis for the development of a next generation malaria vaccine to expand the breadth of anti-PfCSP immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA