Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(7): 200, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850372

RESUMEN

CONTEXT: Given the diverse pathophysiological mechanisms underlying Alzheimer's disease, it is improbable that a single targeted drug will prove successful as a therapeutic strategy. Therefore, exploring various hypotheses in drug design is imperative. The sequestration of Fe(II) and Zn(II) cations stands out as a crucial mechanism based on the mitigation of reactive oxygen species. Moreover, inhibiting acetylcholinesterase represents a pivotal strategy to enhance acetylcholine levels in the synaptic cleft. This research aims to investigate the analogs of Huperzine A, documented in scientific literature, considering of these two hypotheses. Consequently, the speciation chemistry of these structures with Fe(II) and Zn(II) was scrutinized using quantum chemistry calculations, molecular docking simulations, and theoretical predictions of pharmacokinetics properties. From the pharmacokinetic properties, only two analogs, HupA-A1 and HupA-A2, exhibited a theoretical permeability across the blood-brain barrier; on the other hand, from a thermodynamic standpoint, the enantiomers of HupA-A2 showed negligible chelation values. The enantiomers with the most favorable interaction parameters were S'R'HupA-A1 (ΔGBIND = -40.0 kcal mol-1, fitness score = 35.5) and R'R'HupA-A1 (ΔGBIND = -35.5 kcal mol-1, fitness score = 22.61), being compared with HupA (ΔGBIND = -41.75 kcal mol-1, fitness score = 39.95). From this study, some prime candidates for promising drug were S'R'HupA-A1 and R'R'HupA-A1, primarily owing to their favorable thermodynamic chelating capability and potential anticholinesterase mechanism. METHODS: Quantum chemistry calculations were carried out at B3LYP/6-31G(d) level, considering the IEF-PCM(UFF) implicit solvent model for water. The coordination compounds were assessed using the Gibbs free energy variation and hard and soft acid theory. Molecular docking calculations were conducted using the GOLD program, based on the crystal structure of the acetylcholinesterase protein (PDB code = 4EY5), where the ChemScore function was employed with the active site defined as the region within a 15-Å radius around the centroid coordinates (X = -9.557583, Y = -43.910473, Z = 31.466687). Pharmacokinetic properties were predicted using SwissADME, focusing on Lipinski's rule of five.


Asunto(s)
Acetilcolinesterasa , Alcaloides , Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Sesquiterpenos , Enfermedad de Alzheimer/tratamiento farmacológico , Alcaloides/química , Sesquiterpenos/química , Humanos , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Barrera Hematoencefálica/metabolismo , Termodinámica , Zinc/química , Modelos Moleculares , Hierro/química , Hierro/metabolismo
2.
J Mol Model ; 28(9): 257, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974210

RESUMEN

The oxidation of chalcopyrite, CuFeS2, is still not well understood and relevant in the context of the hydrometallurgical extraction of copper. Herein, we used DFT calculations within the periodic boundary conditions formalism to study the adsorption of O2 and [Fe(H2O)2(OH)3] molecules on the (001) and (112) surfaces of CuFeS2. The O2 molecule adsorbs strongly by a dissociative pathway at sulfur atoms on the (001) surface with an adsorption energy of - 76.5 kcal mol-1. The surface is chemically modified forming SO2 groups, in which the S-O bond length is calculated to be 1.47 and 1.54 Å. PDOS and Löwdin charges analyses indicate the oxidation of the sulfur atoms on the surface. We tested different adsorption modes of [Fe(H2O)2(OH)3], and a bidantade coordination with the Oads-Fesur and Feads-Ssur bond lengths of 2.02 and 2.47 Å is the most favorable with an adsorption energy of - 18.8 kcal mol-1 on the (001) surface. Adsorptions of each species are also observed on the (112) surface, but they are weaker than those observed on the (001) surface.

3.
Antioxidants (Basel) ; 9(4)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218363

RESUMEN

Protein S-nitrosation is an important consequence of NO●·metabolism with implications in physiology and pathology. The mechanisms responsible for S-nitrosation in vivo remain debatable and kinetic data on protein S-nitrosation by different agents are limited. 2-Cys peroxiredoxins, in particular Prx1 and Prx2, were detected as being S-nitrosated in multiple mammalian cells under a variety of conditions. Here, we investigated the kinetics of Prx1 S-nitrosation by nitrosoglutathione (GSNO), a recognized biological nitrosating agent, and by the dinitrosyl-iron complex of glutathione (DNIC-GS; [Fe(NO)2(GS)2]-), a hypothetical nitrosating agent. Kinetics studies following the intrinsic fluorescence of Prx1 and its mutants (C83SC173S and C52S) were complemented by product analysis; all experiments were performed at pH 7.4 and 25 ℃. The results show GSNO-mediated nitrosation of Prx1 peroxidatic residue ( k + N O C y s 52 = 15.4 ± 0.4 M-1. s-1) and of Prx1 Cys83 residue ( k + N O C y s 83 = 1.7 ± 0.4 M-1. s-1). The reaction of nitrosated Prx1 with GSH was also monitored and provided a second-order rate constant for Prx1Cys52NO denitrosation of k - N O C y s 52 = 14.4 ± 0.3 M-1. s-1. In contrast, the reaction of DNIC-GS with Prx1 did not nitrosate the enzyme but formed DNIC-Prx1 complexes. The peroxidatic Prx1 Cys was identified as the residue that more rapidly replaces the GS ligand from DNIC-GS ( k D N I C C y s 52 = 7.0 ± 0.4 M-1. s-1) to produce DNIC-Prx1 ([Fe(NO)2(GS)(Cys52-Prx1)]-). Altogether, the data showed that in addition to S-nitrosation, the Prx1 peroxidatic residue can replace the GS ligand from DNIC-GS, forming stable DNIC-Prx1, and both modifications disrupt important redox switches.

4.
Environ Sci Pollut Res Int ; 24(7): 6233-6240, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27525739

RESUMEN

This work evaluated the photo-Fenton degradation of two pharmaceuticals extensively used in human medicine, ciprofloxacin (CIP), and fluoxetine (FLU) when present in an anaerobic pre-treated hospital effluent (HE) at low concentration (100 µg L-1). Operational parameters such as concentration of hydrogen peroxide, iron, and initial pH as well as the effect of iron citrate complex were evaluated considering the degradation of the pharmaceuticals. Iron citrate complex (Fecit) influenced significantly FLU degradation at pH 4.5 achieving 80 % after 20 min, while with iron nitrate only 36 % degradation was obtained after the same time. However, only a slight effect was observed on CIP degradation, achieving 86 % with Fecit and 75 % with Fe(NO3)3, after 20 min. Samples of HE used in this work were previously treated in an anaerobic reactor followed by sand filtration; however, the presence of pharmaceuticals was detected. Degradation of both FLU and CIP was significantly hindered when present in HE, due to the relatively high content of organic (39.6 mg L-1) and inorganic (12.5 mg L-1) carbon, which may have consumed ·OH in side reactions. However, the iron cycle reduction was not affected by the matrix in the presence of citrate. Despite the recalcitrance of the matrix (no total organic carbon removal), it was possible to achieve over 50 % degradation of both pharmaceuticals after 90 min.


Asunto(s)
Ciprofloxacina/química , Fluoxetina/química , Hospitales , Peróxido de Hidrógeno/química , Hierro/química , Fotólisis , Contaminantes Químicos del Agua/química , Filtración , Concentración de Iones de Hidrógeno , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA