Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Small ; : e2405649, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263810

RESUMEN

Nitric oxide (NO), a key element in the regulation of essential biological mechanisms, presents huge potential as therapeutic agent in the treatment and prevention of chronic diseases. Metal-organic frameworks (MOFs) with open metal sites are promising carriers for NO therapies but delivering it over an extended period in biological media remains a great challenge due to i) a fast degradation of the material in body fluids and/or ii) a rapid replacement of NO by water molecules onto the Lewis acid sites. Here, a new ultra-narrow pores Fe bisphosphonate MOF, denoted MIP-210(Fe) or Fe(H2O)(Hmbpa) (H4mbpa = p-xylenediphosphonic acid) is described that adsorbs NO due to an unprecedented sorption mechanism: coordination of NO through the Fe(III) sites is unusually preferred, replacing bound water, and creating a stable interaction with the free H2O and P-OH groups delimiting the ultra-narrow pores. This, associated with the high chemical stability of the MOF in body fluids, enables an unprecedented slow replacement of NO by water molecules in biological media, achieving an extraordinarily extended NO delivery time over at least 70 h, exceeding by far the NO kinetics release reported with others porous materials, paving the way for the development of safe and successful gas therapies.

2.
Molecules ; 29(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202803

RESUMEN

An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established by XRD. The iron atom is hexa-coordinated by the four nitrogen atoms of the pyrrol rings and the two oxygen atoms of the CO32- group. Complex I, characterized as a ferric high-spin complex (S = 5/2), presented higher Fe-Np (2.105(6) Å) and Fe-PC (0.654(2) Å) distances. Both X-ray molecular structure and Hirshfeld surface analysis results show that the crystal packing of I is made by C-H⋯O and C-H⋯Cg weak intermolecular hydrogen interactions involving neighboring [FeIII(TpivPP)(CO3)]- ion complexes. Computational studies were carried out at DFT/B3LYP-D3/LanL2DZ to investigate the HOMO and LUMO molecular frontier orbitals and the reactivity within the studied compound. The stability of compound I was investigated by analyzing both intra- and inter-molecular interactions using the 2D and 3DHirshfeld surface (HS) analyses. Additionally, the frontier molecular orbital (FMO) calculations and the molecular electronic potential (MEP) analyses were conducted to determine the electron localizations, electrophilic, and nucleophilic regions, as well as charge transfer (ECT) within the studied system.

3.
Molecules ; 29(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39202921

RESUMEN

Iodosilarene derivatives (PhIO, PhI(OAc)2) constitute an important class of oxygen atom transfer reagents in organic synthesis and are often used together with iron-based catalysts. Since the factors controlling the ability of iron centers to catalyze alkane hydroxylation are not yet fully understood, the aim of this report is to develop bioinspired non-heme iron catalysts in combination with PhI(OAc)2, which are suitable for performing C-H activation. Overall, this study provides insight into the iron-based ([FeII(PBI)3(CF3SO3)2] (1), where PBI = 2-(2-pyridyl)benzimidazole) catalytic and stoichiometric hydroxylation of triphenylmethane using PhI(OAc)2, highlighting the importance of reaction conditions including the effect of the co-ligands (para-substituted pyridines) and oxidants (para-substituted iodosylbenzene diacetates) on product yields and reaction kinetics. A number of mechanistic studies have been carried out on the mechanism of triphenylmethane hydroxylation, including C-H activation, supporting the reactive intermediate, and investigating the effects of equatorial co-ligands and coordinated oxidants. Strong evidence for the electrophilic nature of the reaction was observed based on competitive experiments, which included a Hammett correlation between the relative reaction rate (logkrel) and the σp (4R-Py and 4R'-PhI(OAc)2) parameters in both stoichiometric (ρ = +0.87 and +0.92) and catalytic (ρ = +0.97 and +0.77) reactions. The presence of [(PBI)2(4R-Py)FeIIIOIPh-4R']3+ intermediates, as well as the effect of co-ligands and coordinated oxidants, was supported by their spectral (UV-visible) and redox properties. It has been proven that the electrophilic nature of iron(III)-iodozilarene complexes is crucial in the oxidation reaction of triphenylmethane. The hydroxylation rates showed a linear correlation with the FeIII/FeII redox potentials (in the range of -350 mV and -524 mV), which suggests that the Lewis acidity and redox properties of the metal centers greatly influence the reactivity of the reactive intermediates.

4.
Acta Crystallogr C Struct Chem ; 80(Pt 9): 567-575, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39158992

RESUMEN

A long-standing issue about the correct identification of an important starting reagent, iron(III) hexafluoroacetylacetonate, Fe(hfac)3 (1), has been resolved. The tris-chelated mononuclear complex was found to crystallize in two polymorph modifications which can be assigned as the low-temperature (1-L) monoclinic P21/n and the high-temperature (1-H) trigonal P-3. Low-temperature polymorph 1-L was found to transform to 1-H upon sublimation at 44 °C. Two modifications are clearly distinguished by powder X-ray diffraction (PXRD), single-crystal X-ray diffraction, differential scanning calorimetry (DSC), and melting-point measurements. On the other hand, the two forms share similar characteristics in direct analysis in real-time mass spectrometry (DART-MS), attenuated total reflection (ATR) spectroscopy, and some physical properties, such as color, volatility, sensitivity, and solubility. Analysis of the literature and some of our preliminary data strongly suggest that the appearance of two polymorph modifications for trivalent metal (both transition and main group) hexafluoroacetylacetonates is a common case for several largely used complexes not yet accounted for in the crystallographic databases.

5.
J Biol Inorg Chem ; 29(6): 583-599, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39133326

RESUMEN

Iron(III) complexes based on N,N´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (X1), chlorine (X2) and bromine (X3) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Diseño de Fármacos , Halogenación , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad , Etilenodiaminas/química , Etilenodiaminas/farmacología , Etilenodiaminas/síntesis química , Proliferación Celular/efectos de los fármacos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Compuestos Férricos/síntesis química , Estructura Molecular
6.
J Inorg Biochem ; 259: 112658, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38964199

RESUMEN

Many microbes produce siderophores, which are extremely potent weapons capable of stealing iron ions from human tissues, fluids and cells and transferring them into bacteria through their appropriate porins. We have recently designed a multi-block molecule, each block having a dedicated role. The first component is an antimicrobial peptide, whose good effectiveness against some bacterial strains was gradually improved through interactive sequence modifications. Connected to this block is a flexible bio-band, also optimized in length, which terminates in a hydroxyamide unit, a strong metal binder. Thus, the whole molecule brings together two pieces that work synergistically to fight infection. To understand if the peptide unit, although modified with a long tail, preserves the structure and therefore the antimicrobial activity, and to characterize the mechanism of interaction with bio-membrane models mimicking Gram-negative membranes, we performed a set of fluorescence-based experiments and circular dichroism studies, which further supported our design of a combination of two different entities working synergistically. The chelating activity and iron(III) binding of the peptide was confirmed by iron(III) paramagnetic NMR analyses, and through a competitive assay with ethylenediamine-tetra acetic acid by ultraviolet-visible spectroscopy. The complexation parameters, the Michaelis constant K, and the number of sites n, evaluated with spectrophotometric techniques are confirmed by Fe(III) paramagnetic NMR analyses here reported. In conclusion, we showed that the coupling of antimicrobial capabilities with iron-trapping capabilities works well in the treatment of infectious diseases caused by Gram-negative pathogens.


Asunto(s)
Sideróforos , Sideróforos/química , Sideróforos/farmacología , Hierro/química , Compuestos Férricos/química , Compuestos Férricos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología
7.
Sci Total Environ ; 939: 173378, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38795993

RESUMEN

Cyanobacterial blooms have been a growing problem in water bodies and attracted attention from researcher and water companies worldwide. Different treatment methods have been researched and applied either inside water treatment plants or directly into reservoirs. We tested a combination of coagulants, polyaluminium chloride (PAC) and iron(III) chloride (FeCl3), and ballasts, luvisol (LUV) and planosol (PLAN), known as the 'Floc and Sink' technique, to remove positively buoyant cyanobacteria from a tropical reservoir water. Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to optimize the two reaction variables - coagulant dosage (x1) and ballast dosage (x2) to remove the response variables: chlorophyll-a, turbidity, true color, and organic matter. Results showed that the combination of LUV with PAC effectively reduced the concentration of the response variables, while PLAN was ineffective in removing cyanobacteria when combined to PAC or FeCl3. Furthermore, FeCl3 presented poorer floc formation and lower removal efficiency compared to PAC. This study may contribute to the theoretical and practical knowledge of the algal biomass removal for mitigating eutrophication trough different dosages of coagulants and ballasts.


Asunto(s)
Cianobacterias , Eutrofización , Cianobacterias/crecimiento & desarrollo , Purificación del Agua/métodos , Cloruros/análisis , Floculación , Compuestos Férricos , Hidróxido de Aluminio/química , Suelo/química
8.
Environ Res ; 255: 119134, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751002

RESUMEN

The deep removal of organic pollutants is challenging for coagulation technology in drinking water and wastewater treatment plants to satisfy the rising water standards. Iron (III) chloride (FeCl3) is a popular inorganic coagulant; although it has good performance in removing the turbidity (TB) in water at an alkaline medium, it cannot remove dissolved pollutants and natural organic matter such as humic acid water solution. Additionally, its hygroscopic nature complicates determining the optimal dosage for effective coagulation. Biochar (BC), a popular adsorbent with abundant functional groups, porous structure, and relatively high surface area, can adsorb adsorbates from water matrices. Therefore, combining BC with FeCl3 presents a potential solution to address the challenges associated with iron chloride. Consequently, this study focused on preparing and characterizing a novel biochar/ferric chloride-based coagulant (BC-FeCl3) for efficient removal of turbidity (TB) and natural organic matter, specifically humic acid (HA), from synthetic wastewater. The potential solution for the disposal of produced sludge was achieved by its recovering and recycling, then used in adsorption of HA from aqueous solution. The novel coagulant presented high TB and HA removal within 10 min of settling period at pH solution of 7.5. Furthermore, the recovered sludge presented a good performance in the adsorption of HA from aqueous solution. Adsorption isotherm and kinetics studies revealed that the Pseudo-second-order model best described kinetic adsorption, while the Freundlich model dominated the adsorption isotherm.


Asunto(s)
Carbón Orgánico , Cloruros , Compuestos Férricos , Sustancias Húmicas , Aguas Residuales , Sustancias Húmicas/análisis , Carbón Orgánico/química , Adsorción , Cloruros/química , Compuestos Férricos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
9.
Pharmaceuticals (Basel) ; 17(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794222

RESUMEN

Colon cancer (CC) management includes surgery, radio- and chemotherapy based on treatment with 5-fluorouracil (5-FU) or its derivatives. However, its application is limited to low-grade carcinomas. Thus, much research has been conducted to introduce new techniques and drugs to the therapy. CC mostly affects older people suffering from cardiac diseases, where iron compounds are commonly used. Ferric citrate and iron (III)-EDTA complexes have proven to be effective in colon cancer in vitro. This study aimed to determine the potency and action of iron-containing compounds in colon cancer treatment by chemo- and electrochemotherapy in both nano- and microsecond protocols. The viability of the cells was assessed after standalone iron (III) citrate and iron (III)-EDTA incubation. Both compounds were also assessed with 5-FU to determine the combination index. Additionally, frataxin expression was taken as the quantitative response to the exposition of iron compounds. Each of the substances exhibited a cytotoxic effect on the LoVo cell line. Electroporation with standalone drugs revealed the potency of 5-FU and iron(III)-EDTA in CC treatment. The combination of 5-FU with iron(III)-EDTA acted synergistically, increasing the viability of the cells in the nanosecond electrochemotherapy protocol. Iron(III)-EDTA decreased the frataxin expression, thus inducing ferroptosis. Iron(III) citrate induced the progression of cancer; therefore, it should not be considered as a potential therapeutic option. The relatively low stability of iron(III) citrate leads to the delivery of citrate anions to cancer cells, which could increase the Krebs cycle rate and promote progression.

10.
Int J Biol Macromol ; 269(Pt 1): 132099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710256

RESUMEN

Iron deficiency anemia (IDA) is the most common nutritional disease worldwide. In this study, a low methoxyl pectin (LMP)­iron(III) complex was prepared. The physicochemical and structural properties were characterized by HPSEC, HPIC, CV, FTIR, 1H NMR, XRD, SEM and CD. The results showed that iron increased the molecular weight of the LMP­iron(III) from 11.50 ± 0.32 to 12.70 ± 0.45 kDa and improved its crystallinity. Moreover, the findings demonstrated that -OH and -COOH groups in LMP coordinate with Fe3+ to form ß-FeOOH. The water-holding capacity, emulsion stability, and antioxidant activities of the LMP­iron(III) were lower than those of LMP. Furthermore, the therapeutic effects of LMP­iron(III) on IDA were investigated in rats. Following LMP­iron(III) supplementation, compared with the model group, the administration of LMP­iron(III) significantly increased the body weight, hemoglobin concentration, and serum iron concentration as well as decreased free erythrocyte protoporphyrin concentration. Therefore, the LMP­iron(III) can potentially treat IDA in rats experiments, providing a theoretical basis for the development of a promising iron supplement.


Asunto(s)
Anemia Ferropénica , Hierro , Pectinas , Animales , Pectinas/química , Pectinas/farmacología , Ratas , Anemia Ferropénica/tratamiento farmacológico , Hierro/química , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Fenómenos Químicos , Hemoglobinas/química , Hemoglobinas/metabolismo , Peso Molecular , Peso Corporal/efectos de los fármacos , Ratas Sprague-Dawley
11.
MethodsX ; 12: 102724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699467

RESUMEN

In this study, a smartphone was used as the photometer for determination of iron (III) by forming a complex with thiocyanate. After color formation at concentrations of, image capture with mobile phone, signal analysis of each sample was performed by the application and converted to the absorption number. The calibration curve was completely linear in the range of 10 to 80 mg L-1 used and the linear coefficient was better than 0.9833. The limits of detection (LOD) and quantification (LOQ) were 0.1 and 0.3 mg L-1, respectively. Finally, this method was successfully used to measure iron in real samples.•A smartphone was used for the determination of iron (III), showcasing its potential in color compound analysis.•The method demonstrated superior performance in terms of calibration curve range and measurement speed compared to traditional atomic absorption devices.•The technique was successfully applied in the measurement of iron in real samples, indicating its practical applicability.

12.
Anal Sci ; 40(9): 1619-1627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38809341

RESUMEN

In this study, we developed a simple method that enables iron(III) in environmental water to be directly determined via spectrophotometry. In water samples, iron(III) formed a yellowish complex with N-1-Naphthylethylenediamine dihydrochloride (NEDA) at pH 2.0-2.8, the maximum absorption wavelength of which was 462 nm. Detection sensitivity increased in the presence of chloride ions and remained constant for 2-24 h with 0.05-0.57 mol L-1 chloride. Therefore, NEDA solution containing chloride ions was used as a chromogenic reagent for the determination of iron(III). The determination range for this method was 0.1-20 mgFe(III) L-1 in a 5 cm glass cell. The developed method is highly selective for iron(III) and has been successfully applied to freshwater, brackish water, seawater, turbid water in rivers, as well as to riverbed and freshwater lake sediments. In addition, a combination of the proposed NEDA method and the 1,10-phenanthroline method enabled simultaneous determination of iron(III) and iron(II).

13.
Bioresour Technol ; 399: 130579, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479628

RESUMEN

An effective deep eutectic solvent (DES) and Iron(III) chloride (FeCl3) combination pretreatment system was developed to improve the removal efficiency of lignin and hemicellulose from corn stover (CS) and enhance its saccharification. N-(2-hydroxyethyl)ethylenediamine (NE) was selected as the hydrogen-bond-donor for preparing ChCl-based DES (ChCl:NE), and a mixture of ChCl:NE (60 wt%) and FeCl3 (0.5 wt%) was utilized for combination pretreatment of CS at 110 ℃ for 50 min. FeCl3/ChCl:NE effectively removed lignin (87.0 %) and xylan (55.9 %) and the enzymatic hydrolysis activity of FeCl3/ChCl:NE-treated CS was 5.5 times that of CS. The reducing sugar yield of pretreated CS was 98.6 %. FeCl3/ChCl:NE significantly disrupted the crystal structure of cellulose in CS and improved the removal of lignin and hemicellulose, enhancing the conversion of cellulose and hemicellulose into monomeric sugars. Overall, this combination of FeCl3 and DES pretreatment methods has high application potential for the biological refining of lignocellulose.


Asunto(s)
Compuestos Férricos , Lignina , Lignina/química , Cloruros , Zea mays/química , Disolventes Eutécticos Profundos , Solventes/química , Biomasa , Celulosa/química , Xilanos , Hidrólisis
14.
Curr Pharm Biotechnol ; 25(15): 2022-2031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38310447

RESUMEN

BACKGROUND: Nanocomposite glycerohydrogels based on biocompatible elementcontaining glycerolates are of practicular interest for biomedical applications. OBJECTIVE: Using two biocompatible precursors, silicon and iron glycerolates, a new bioactive nanocomposite silicon‒iron glycerolates hydrogel was obtained by sol-gel method. METHODS: The composition and structural features of the hydrogel were studied using a complex of modern analytical techniques, including TEM, XRD, and AES. On the example of experimental animals hemostatic activity of the hydrogel was studied, as well as primary toxicological studies were carried out. RESULTS: The composition of dispersed phase and dispersion medium of silicon‒iron glycerolates hydrogel was determined. The structural features of hydrogel were revealed and its structure model was proposed. It was shown that silcon-iron glycerolates hydrogel is nontoxic, and exhibits pronounced hemostatic activity. CONCLUSION: Silicon-iron glycerolates hydrogel is a potential hemostatic agent for topical application in medical and veterinary practice.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Nanocompuestos , Nanocompuestos/química , Animales , Hidrogeles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Glicerol/química , Glicerol/análogos & derivados , Hemostáticos/química , Hemostáticos/farmacología , Hemostáticos/síntesis química , Hemostáticos/administración & dosificación , Silicio/química , Compuestos Férricos/química , Hierro/química , Masculino
15.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257278

RESUMEN

Two trinuclear oxo-centred iron(III) coordination compounds of monensic and salinomycinic acids (HL) were synthesized and their spectral properties were studied using physicochemical/thermal methods (FT-IR, TG-DTA, TG-MS, EPR, Mössbauer spectroscopy, powder XRD) and elemental analysis. The data suggested the formation of [Fe3(µ3-O)L3(OH)4] and the probable complex structures were modelled using the DFT method. The computed spectral parameters of the optimized constructs were compared to the experimentally measured ones. In each complex, three metal centres were joined together at the axial position by a µ3-O unit to form a {Fe3O}7+ core. The antibiotics monoanions served as bidentate ligands through the carboxylate and hydroxyl groups located at the termini. The carboxylate moieties played a dual role bridging each two metal centres. Hydroxide anions secured the overall neutral character of the coordination species. Mössbauer spectra displayed asymmetric quadrupole doublets that were consistent with the existence of two types of high-spin iron(III) sites with different environments-two Fe[O5] and one Fe[O6] centres. The solid-state EPR studies confirmed the +3 oxidation state of iron with a total spin St = 5/2 per trinuclear cluster. The studied complexes are the first iron(III) coordination compounds of monensin and salinomycin reported so far.

16.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276377

RESUMEN

This article presents research on biodegradable stretch sensors produced using biological material. This sensor uses a piezoresistive effect to indicate stretch, which can be used for force measurement. In this work, an attempt was made to develop the composition of a sensitive material and to design a sensor. The biodegradable base was made from a κ-carrageenan compound mixed with Fe2O3 microparticles and glycerol. The influence of the weight fraction and iron oxide microparticles on the tensile strength and Young's modulus was experimentally investigated. Tensile test specimens consisted of 10-25% iron oxide microparticles of various sizes. The results showed that increasing the mass fraction of the reinforcement improved the Young's modulus compared to the pure sample and decreased the elongation percentage. The GF of the developed films varies from 0.67 to 10.47 depending on composition. In this paper, it was shown that the incorporation of appropriate amounts of Fe2O3 microparticles into κ-carrageenan can achieve dramatic improvements in mechanical properties, resulting in elongation of up to 10%. The developed sensors were experimentally tested, and their sensitivity, stability, and range were determined. Finally, conclusions were drawn on the results obtained.


Asunto(s)
Compuestos Férricos , Fenómenos Mecánicos , Carragenina , Resistencia a la Tracción , Módulo de Elasticidad
17.
J Hazard Mater ; 465: 133185, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064950

RESUMEN

In the thermal treatment of municipal solid waste incineration fly ash (FA), the presence of chlorides leads to the pronounced volatilization of heavy metals at high temperature, making heavy metals stabilization challenging. Conventional washing processes struggle to remove chlorides completely, and even minor residual chlorides can lead to significant heavy metal volatilization. This study innovatively applied iron(III) sulfate as a chlorine depleting agent, which can form FeCl3 (boiling point 316 °C) and volatilize to remove the residual chlorides at below 500 °C, thus preventing the chlorination and volatilization of heavy metals at 600-1000 °C. Using water-washed FA to produce lightweight aggregate (LWA) preparation, after adding iron(III) sulfate, the volatilization rates of Pb and Cd at 1140 °C decreased to 5.4% and 9.3%, respectively, a reduction of 82.8% and 84.1% compared to before its addition. The LWA met standard requirements in both performance and heavy metal leaching toxicity. The mechanism was further studied through thermodynamic equilibrium calculations and heating experiments of pure chemicals. This study presents novel approaches and insights for suppressing the volatilization of heavy metals in FA at high temperature, thereby promoting the advancement of thermal treatment techniques and the safe, resourceful disposal of FA.

18.
Sensors (Basel) ; 23(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38067796

RESUMEN

The development of low-cost biodegradable pressure or force sensors based on a carrageenan and iron (III) oxide mix is a promising way to foster the spread of green technologies in sensing applications. The proposed materials are inexpensive and abundant and are available in large quantities in nature. This paper presents the development and experimental study of carrageenan and iron (III)-oxide-based piezoresistive sensor prototypes and provides their main characteristics. The results show that glycerol is required to ensure the elasticity of the material and preserve the material from environmental impact. The composition of the carrageenan-based material containing 1.8% Fe2O3 and 18% glycerol is suitable for measuring the load in the range from 0 N to 500 N with a sensitivity of 0.355 kΩ/N when the active surface area of the sensor is 100 mm2. Developed sensors in the form of flexible film have square resistance dependence to the force/pressure, and due to the soft original material, they face the hysteresis effect and some plastic deformation effect in the initial use stages. This paper contains extensive reference analysis and found a firm background for a new sensor request. The research covers the electric and mechanical properties of the developed sensor and possible future applications.

19.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794762

RESUMEN

Mononuclear complexes [FeCl3L2(OH2)] (L = L1, L2) were designed and synthesized by combining FeCl3 with 2-(3'-Aminophenylbenzimidazole) (L1) and 2-[(3'-N-Salicylidinephenyl)benzimidazole] (L2) and were characterized by physico-analytical strategies. The redox properties of the complexes were disclosed by the cyclic voltammetric method. Further, the interactions of complexes with proteins were studied by performing molecular docking engaging protein models of common cancer therapeutic targets to foresee their affinity to bind to these proteins. The complexes evidenced better protein-ligand docking (-8.4 and -9.0 kcal mol-1) and higher binding energies than their ligands. However, the L1 complex displayed improved binding free energy (-33.576 ± 1.01 kcal mol-1) compared to the other complexes and individual ligands. These compounds were screened for in vitro cytotoxic assays against triple-negative breast cancer cell lines (MDA-MB-468 cells), anti-inflammatory, antimicrobial, and antioxidant properties. The in vitro study complemented the in silico assay; therefore, these compounds may be a viable choice for expanding anticancer therapy. Additionally, the L2 showed better biocontrol activity owing to the enhanced growth of Trichoderma and inhibited the growth of Fusarium oxysporum.Communicated by Ramaswamy H. Sarma.

20.
Membranes (Basel) ; 13(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37623784

RESUMEN

The transport of iron(III) from aqueous solutions through pseudo-emulsion-based hollow fiber with strip dispersion (PEHFSD) was investigated using a microporous hydrophobic hollow fiber membrane module. The pseudo-protic ionic liquid RNH3HSO4- dissolved in Solvesso 100 was used as the carrier phase. This pseudo-protic ionic liquid was generated by the reaction of the primary amine Primene JMT (RNH2) with sulphuric acid. The aqueous feed phase (3000 cm3) containing iron(III) was passed through the tube side of the fiber, and the pseudo-emulsion phase of the carrier phase (400 cm3) and sulphuric acid (400 cm3) were circulated through the shell side in counter-current operational mode, using a single hollow fiber module for non-dispersive extraction and stripping. In the operation, the stripping solution (sulphuric acid) was dispersed into the organic membrane phase in a tank with a mixing arrangement (a four-blade impeller stirrer) designed to provide strip dispersion. This dispersed phase was continuously circulated from the tank to the membrane module in order to provide a constant supply of the organic solution to the fiber pores. Different hydrodynamic and chemical parameters, such as feed (75-400 cm3/min) and pseudo-emulsion phases (50-100 cm3/min) flows, sulphuric acid concentration in the feed and stripping phases (0.01-0.5 M and 0.5-3 M, respectively), metal concentration (0.01-1 g/L) in the feed phase, and PPILL concentration (0.027-0.81 M) in the carrier phase, were investigated. From the experimental data, different diffusional parameters were estimated, concluding that the resistance due to the feed phase was not the rate-controlling step of the overall iron(III) transport process. It was possible to concentrate iron(III) in the strip phase using this smart PEHFSD technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA