Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397606

RESUMEN

This study aimed to investigate the synergistic effects of high-intensity ultrasound (0, 5, 10, 15, and 20 min) in combination with L-lysine (15 mM) on improving the solubility and flavour adsorption capacity of myofibrillar proteins (MPs) in low-ion-strength media. The results revealed that the ultrasound treatment for 20 min or the addition of L-lysine (15 mM) significantly improved protein solubility (p < 0.05), with L-lysine (15 mM) showing a more pronounced effect (p < 0.05). The combination of ultrasound treatment and L-lysine further increased solubility, and the MPs treated with ultrasound at 20 min exhibited the best dispersion stability in water, which corresponded to the lowest turbidity, highest absolute zeta potential value, and thermal stability (p < 0.05). Based on the reactive and total sulfhydryl contents, Fourier transform infrared spectroscopy, and fluorescence spectroscopy analysis, the ultrasound treatment combined with L-lysine (15 mM) promoted the unfolding and depolymerization of MPs, resulting in a larger exposure of SH groups on the surface, aromatic amino acids in a polar environment, and a transition of protein conformation from α-helix to ß-turn. Moreover, the combined treatment also increased the hydrophobic bonding sites, hydrogen-bonding sites, and electrostatic effects, thereby enhancing the adsorption capacity of MPs to bind kenone compounds. The findings from this study provide a theoretical basis for the production and flavour improvement of low-salt MP beverages and the utilisation of meat protein.

2.
Ultrason Sonochem ; 71: 105354, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33053489

RESUMEN

Ionic surfactants tend to accumulate in the interfacial region of ultrasonic cavitation bubbles (cavities) because of their surface active properties and because they are difficult to evaporate in cavitation bubbles owing to their extremely low volatilities. Hence, sonolysis of ionic surfactants is expected to occur in the interfacial region of the cavity. In this study, we performed sonochemical degradation of surfactants with different charge types: anionic, cationic, zwitterionic, and nonionic. We then estimated the degradation rates of the surfactants to clarify the surfactant behavior in the interfacial region of cavitation bubbles. For all of the surfactants investigated, the degradation rate increased with increasing initial bulk concentration and reached a maximum value. The initial bulk concentration to obtain the maximum degradation rate had a positive correlation with the critical micelle concentration (cmc). The initial bulk concentrations of the anionic surfactants were lower than their cmcs, while those of the cationic surfactants were higher than their cmcs. These results can be explained by the negatively charged cavity surface and the effect of the coexisting counterions of the surfactants.

3.
Sci Total Environ ; 742: 140438, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623161

RESUMEN

Perfluoroalkyl substance (PFAS) is a class of anionic surfactants with superior stability in the environment. Due to the harmful health effect, PFASs have been listed as the priority controlled pollutants. Our recent study had developed a cationic surfactant induced ternary self-assembled micelle system to effectively degrade PFASs. In this study, using perfluorooctanoic acid (PFOA) as the model pollutant, we further investigated the effects of different variables on the degradation processes. According to the results of laser flash photolysis and dynamic light scattering, the degradation of PFOA was positively correlated with the chain length of the surfactants. While for double-chain surfactant, the steric effect might hinder the reaction. Our results also indicated that in the presence of high concentration of NaCl, the electrostatic attraction between Cl- and the positively charged micelle made the micelle structure loose and thus slightly reduced the degradation efficiency. Similarly, the presence of NOM could also affect the degradation process via regulating the micelle structure. Furthermore, the optimal degradation efficiency for PFOA was obtained at neutral pH by the compromise of hydrated electron yield and self-assembled micelle structure. This composite showed good adaptability under ambient conditions and would have great potential for treatment of industrial PFAS containing wastewater, e.g., in the ternary micelle system, 18.95 mg L-1 PFOA could be completely degraded within 8 h without any pretreatments.

4.
Sci Total Environ ; 722: 137811, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32179301

RESUMEN

In this work, biochar based hydrogel microspheres were fabricated successfully to develop pH and ion strength dual-stimuli responsively controlled-release system for hydrophilic pesticide. Herein, gentian violet (GV) was selected as model hydrophilic pesticide. Taking advantage of the cross-linking reaction, GV was incorporated into biochar and the 3D network-structured hydrogel, guaranteeing a satisfying encapsulation efficiency and sustained release of pesticide. The leaching behavior of pesticide in simulated soil column at different pHs and ion strength was in accordance with the corresponding release performance, and bulk of pesticide was retarded on the surface. In addition, the pesticide carrier had nearly no toxic effect on the cell proliferation and zebrafish embryo, displaying a good biosafety. The work provides a promising strategy with a low-cost and simple procedure that could regulate pesticide release behavior, decrease leaching loss, and improve the utilization efficiency of pesticide.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Hidrogeles , Plaguicidas , Suelo , Contaminantes del Suelo
5.
ACS Appl Mater Interfaces ; 11(43): 40817-40825, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31556587

RESUMEN

The real application of DNA-functionalized gold nanoparticles (DNA-Au NPs) was limited by decreased stability and irreversible aggregation in high-ionic strength solutions and complex systems. Therefore, exploring a kind of DNA-Au NPs with excellent stability in high-ionic strength solutions and complex systems is challenging and significant. Herein, a novel universal bioconjugate strategy for constructing ultrastable DNA-Au NPs was designed based on the combination of polydopamine (PDA) shell and DNA linker. The obtained DNA-linked Au@polydopamine nanoparticles (DNA-Au@PDA NPs) showed colloidal stability in high-ionic strength solution and complex systems (such as human serum and cell culture supernatant). Moreover, the nanoparticles still maintained good dispersion after multiple freeze-thaw cycles. The high stability of DNA-Au@PDA NPs may be attributed to increasing the electrostatic and steric repulsions among nanoparticles through the effect of both PDA shell and DNA linker on Au@PDA NPs. For investigating the application of such nanoparticles, a highly sensitive assay for miRNA 141 detection was developed using DNA-Au@PDA NPs coupled with dynamic light scattering (DLS). Comparing with the regular DNA-Au NPs, DNA-Au@PDA NPs could detect as low as 50 pM miRNA 141 even in human whole serum. Taken together, the features of Bio/Nanointerface make the nanoparticle suitable for various applications in harsh biological and environmental conditions due to the stability. This work may provide a universal modification method for obtaining stable nanoparticles.


Asunto(s)
ADN/química , Oro/química , Nanopartículas del Metal/química , MicroARNs/análisis , Humanos , Indoles/química , Ensayo de Materiales , Polímeros/química
6.
Sci Total Environ ; 646: 265-279, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30055489

RESUMEN

Adsorption is one of the most widely used and effective wastewater treatment methods. The role of ionic strength (IS) in shaping the adsorption performances is much necessary due to the ubiquity of electrolyte ions in water body and industrial effluents. The influences of IS on adsorption are rather complex, because electrolyte ions affect both adsorption kinetics and thermodynamics by changing the basic characteristics of adsorbents and adsorbates. For a given adsorption system, multiple or even contradictory effects of IS may coexist under identical experimental conditions, rendering the dominant mechanism recognition and net effect prediction complicated. We herein reviewed the key advancement on the interaction and mechanisms of IS, including change in number of active sites for adsorbents, ion pair for metal ions, molecular aggregation and salting-out effect for organic compounds, site competition for both inorganic and organic adsorbates, and charge compensation for adsorbent-adsorbate reciprocal interactions. The corresponding fundamental theory was thoroughly described, and the efforts made by various researchers were explicated. The structural optimization of adsorbents affected by IS was detailed, also highlighting polyamine materials with exciting "salt-promotion" effects on heavy metal removal from high salinity wastewater. In addition, the research trends and prospects were briefly discussed.

7.
Se Pu ; 36(5): 480-486, 2018 May 08.
Artículo en Chino | MEDLINE | ID: mdl-30136490

RESUMEN

Asymmetrical flow field-flow fractionation (AF4) is a kind of moderate separation technology for the analysis of macromolecules, including proteins with a wide range of sizes. In the separation channel, the membrane adsorption and aggregation of proteins affected by the carrier fluid (CF) composition lead to changes in analyte recovery and size distribution, thereby restricting the application of AF4 to biomolecules. Different pH levels (6.2, 7.4, 8.2), several types of cations (Na+, K+, Mg2+) and various ion strengths (0-0.1 mol/L)were studied to demonstrate the influence of carrier fluid composition on the membrane adsorption and aggregation of proteins. The results revealed the following:a) higher ion strength of CF resulted in a greater degree of membrane adsorption and aggregation; b) the zeta potential, determined by the pI of the protein and the pH of the CF, influenced the adsorption and aggregation; c) divalent cations (Mg2+) caused serious adsorption and aggregation. The experimental results can help us achieve better recovery and mitigate aggregate formation by using the optimal CF components in future AF4 studies. Moreover, the findings indicate that AF4 would find extensive application in protein biochemistry assays.


Asunto(s)
Fraccionamiento de Campo-Flujo , Ovalbúmina , Adsorción , Cationes , Concentración de Iones de Hidrógeno , Concentración Osmolar
8.
Mol Pharm ; 15(4): 1488-1494, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462563

RESUMEN

The diffusion coefficient (also known as diffusivity) of an active pharmaceutical ingredient (API) is a fundamental physicochemical parameter that affects passive diffusion through biological barriers and, as a consequence, bioavailability and biodistribution. However, this parameter is often neglected, and it is quite difficult to find diffusion coefficients of small molecules of pharmaceutical relevance in the literature. The available methods to measure diffusion coefficients of drugs all suffer from limitations that range from poor sensitivity to high selectivity of the measurements or the need for dedicated instrumentation. In this work, a simple but reliable method based on time-resolved concentration measurements by UV-visible spectroscopy in an unstirred aqueous environment was developed. This method is based on spectroscopic measurement of the variation of the local concentration of a substance during spontaneous migration of molecules, followed by standard mathematical treatment of the data in order to solve Fick's law of diffusion. This method is extremely sensitive and results in highly reproducible data. The technique was also employed to verify the influence of the environmental characteristics (i.e., ionic strength and presence of complexing agents) on the diffusivity. The method can be employed in any research laboratory equipped with a standard UV-visible spectrophotometer and could become a useful and straightforward tool in order to characterize diffusion coefficients in physiological conditions and help to better understand the drug permeability process.


Asunto(s)
Preparaciones Farmacéuticas/química , Agua/química , Difusión , Luz , Concentración Osmolar , Permeabilidad , Rayos Ultravioleta
9.
Sci Total Environ ; 616-617: 1384-1391, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29074248

RESUMEN

In this study, the impacts of various cations, cation strength and pH on ofloxacin (OFL) adsorption to cassava residue-derived biochars were determined. The associated adsorption mechanisms are discussed. The biochars were prepared at pyrolysis temperatures ranging from 350°C to 750°C, and labeled as CW350, CW450, CW550, CW650 and CW750. The Freundlich model provided the best fit to describe the adsorption capacity of OFL and the Freundlich coefficient (logKf) increased with increasing pyrolysis temperature. The inclusion of Zn2+ or Al3+ increased OFL sorption capacities of five biochars, while Cu2+ reduced sorption to CW450 and CW550. No significant impacts on OFL sorption were observed in the presence of K+ and Ca2+. The concentration of Ca2+ affected the adsorption capacity of CW550, but had no significant impact on other biochars. The pH of OFL solution, ranging from 3 to 9, had no significant changes on OFL adsorption by all the tested biochars. Results of FTIR spectra and zeta potential indicated that electrostatic interactions, cationic exchange, metal bridging and micropore filling could be the main sorption mechanism between OFL and biochars. These studies indicated that cassava residue can be converted into biochars that are effective adsorbents for removing OFL from aqueous solution.

10.
ACS Appl Mater Interfaces ; 8(22): 14096-101, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27191946

RESUMEN

Gold nanoparticles provide an excellent platform for biological and material applications due to their unique physical and chemical properties. However, decreased colloidal stability and formation of irreversible aggregates while freeze-drying nanomaterials limit their use in real world applications. Here, we report a new generation of surface ligands based on a combination of short oligo (ethylene glycol) chains and zwitterions capable of providing nonfouling characteristics while maintaining colloidal stability and functionalization capabilities. Additionally, conjugation of these gold nanoparticles with avidin can help the development of a universal toolkit for further functionalization of nanomaterials.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Glicol de Etileno/química , Ligandos , Nanoestructuras/normas
11.
Sci Total Environ ; 550: 717-726, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26849335

RESUMEN

This study examines the cotransport of graphene oxide (GO) and Cu in porous media. The impacts of GO concentration and ion strength (IS) on Cu transport in laboratory packed columns were investigated. The results indicated that GO had fairly high mobility at a IS of 1mM, and could serve as an effective carrier of Cu(II). The facilitated transport was found to increase with increasing concentration of GO (CGO). The peak effluent concentration (C/C0)max of Cu was 0.57 at CGO of 120mg/L and IS=1mM and 0.13 at 40mg/L and IS=1mM. The Cu appears to be irreversibly adsorbed by the sand because no Cu appeared in the effluent in the absence of GO. However, the GO-facilitated Cu transport was reduced as the IS increased from 1 to 1000mM. In fact, the facilitated transport was zero percent at an IS of 1000mM. Particle size analysis, Zeta potential measurements and DLVO calculations demonstrated that higher IS values made the GO became unstable and it flocculated and attached to the sand. We also fed GO into the column pre-equilibrated by Cu as sequential elution experiments and found that the later introduced GO can complex the pre-adsorbed Cu from the sand surface because GO has a higher adsorption affinity for Cu. An advection-dispersion-retention numerical model was able to describe the Cu and GO transport in the column. Our work provides useful insights into fate, transport and risk assessment of heavy metal contaminants in the presence of engineered nanoparticles.

12.
Proteomics ; 15(11): 1935-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25644273

RESUMEN

Serum proteome analysis is severely hampered by the extreme dynamic range of protein concentrations, but tools for the specific depletion of highly abundant serum proteins lack for most farm and companion animals. A well-established alternative strategy to reduce the dynamic range of plasma protein concentrations, treatment with combinatorial peptide ligand libraries (CPLL), is generally applicable but requires large amounts of sample. Therefore, additional depletion/enrichment protocols for plasma and serum samples from animals are desirable. In this respect, we have tested a protein precipitate that formed after withdrawal of salt from human, bovine, or porcine serum at pH 4.2. The bovine sample was composed of over 300 proteins making it a potential source for biomarker discovery. Precipitation was highly reproducible and the concentrations of albumin and other highly abundant serum proteins were strongly reduced. In comparison to the CPLL treatment, precipitation did not introduce any selection bias based on hydrophathy or pI. However, the composition of both preparations was partially complementary. Salt withdrawal at pH 4.2 is suggested as additional depletion/enrichment strategy for serum samples. Also, we point out that the removal of precipitates from serum samples under the described conditions bears the risk of losing a valuable protein fraction.


Asunto(s)
Análisis Químico de la Sangre/métodos , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/química , Proteoma/análisis , Animales , Bovinos , Precipitación Química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Porcinos
13.
ACS Med Chem Lett ; 5(8): 931-6, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25147617

RESUMEN

In order to quantify the interactions between molecules of biological interest, the determination of the dissociation constant (K d) is essential. Estimation of the binding affinity in this way is routinely performed in "favorable" conditions for macromolecules. Crucial data for ligand-protein binding elucidation is mainly derived from techniques (e.g., macromolecular crystallography) that require the addition of high concentration of salts and/or other additives. In this study we have evaluated the effect of temperature, ionic strength, viscosity, and hydrophobicity on the K d of three previously characterized protein-ligand systems, based on variation in their binding sites, in order to provide insight into how these often overlooked unconventional circumstances impact binding affinity. Our conclusions are as follows: (1) increasing solvent viscosity in general is detrimental to ligand binding, (2) moderate increases in temperature have marginal effects on the dissociation constant, and (3) the degree of hydrophobicity of the ligand and the binding site determines the extent of the influence of cosolvents and salt concentration on ligand binding affinity.

14.
Biologicals ; 42(5): 290-3, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24999080

RESUMEN

Nanofiltration is incorporated into the manufacturing processes of many protein biopharmaceuticals to enhance safety by providing the capacity to retain pathogens while allowing protein drugs to pass through the filter. Retention is mainly a function of size; however, the shape of the pathogen may also influence retention. The ability of the Viresolve(®) Pro nanofilter to remove different sized viruses during the manufacture of a Coagulation Factor IX (Alphanine(®) SD) was studied at varying ionic strength, a process condition with the potential to affect virus shape and, hence, virus retention. Eight viruses were tested in a scale-down of the nanofiltration process. Five of the viruses (EMCV, Reo, BVDV, HIV, PRV) were nanofiltered at normal sodium processing conditions and three (PPV, HAV and WNV) were nanofiltered at higher and lower sodium. Representative Reduction Factors for all viruses were ≥4.50 logs and removal was consistent over a wide range of ionic strength.


Asunto(s)
Factor IX/aislamiento & purificación , Ultrafiltración/métodos , Virus/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Contaminación de Medicamentos/prevención & control , Humanos , Filtros Microporos , Nanotecnología , Concentración Osmolar , Tamaño de la Partícula , Virus/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA