Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 134(3): 437-454, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38836501

RESUMEN

BACKGROUND AND AIMS: The benefits and costs of amphistomy (AS) vs. hypostomy (HS) are not fully understood. Here, we quantify benefits of access of CO2 through stomata on the upper (adaxial) leaf surface, using 13C abundance in the adaxial and abaxial epicuticular wax. Additionally, a relationship between the distribution of stomata and epicuticular wax on the opposite leaf sides is studied. METHODS: We suggest that the 13C content of long-chain aliphatic compounds of cuticular wax records the leaf internal CO2 concentration in chloroplasts adjacent to the adaxial and abaxial epidermes. This unique property stems from: (1) wax synthesis being located exclusively in epidermal cells; and (2) ongoing wax renewal over the whole leaf lifespan. Compound-specific and bulk wax 13C abundance (δ) was related to amphistomy level (ASL; as a fraction of adaxial in all stomata) of four AS and five HS species grown under various levels of irradiance. The isotopic polarity of epicuticular wax, i.e. the difference in abaxial and adaxial δ (δab - δad), was used to calculate the leaf dorsiventral CO2 gradient. Leaf-side-specific epicuticular wax deposition (amphiwaxy level) was estimated and related to ASL. KEY RESULTS: In HS species, the CO2 concentration in the adaxial epidermis was lower than in the abaxial one, independently of light conditions. In AS leaves grown in high-light and low-light conditions, the isotopic polarity and CO2 gradient varied in parallel with ASL. The AS leaves grown in high-light conditions increased ASL compared with low light, and δab - δad approached near-zero values. Changes in ASL occurred concomitantly with changes in amphiwaxy level. CONCLUSIONS: Leaf wax isotopic polarity is a newly identified leaf trait, distinguishing between hypo- and amphistomatous species and indicating that increased ASL in sun-exposed AS leaves reduces the CO2 gradient across the leaf mesophyll. Stomata and epicuticular wax deposition follow similar leaf-side patterning.


Asunto(s)
Dióxido de Carbono , Isótopos de Carbono , Epidermis de la Planta , Hojas de la Planta , Estomas de Plantas , Ceras , Ceras/metabolismo , Ceras/química , Isótopos de Carbono/análisis , Dióxido de Carbono/metabolismo , Estomas de Plantas/fisiología , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis
2.
Plants (Basel) ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896025

RESUMEN

Photosynthesis is a crucial process supporting life on Earth. However, unfavorable environmental conditions including toxic metals may limit the photosynthetic efficiency of plants, and the responses to those challenges may vary among genotypes. In this study, we evaluated photosynthetic parameters of the chili pepper varieties Jalapeño, Poblano, and Serrano exposed to Cd (0, 5, 10 µM), Tl (0, 6, 12 nM), and V (0, 0.75, 1.5 µM). Metals were added to the nutrient solution for 60 days. Stomatal conductance (Gs), transpiration rate (Tr), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), instantaneous carboxylation efficiency (Pn/Ci), instantaneous water use efficiency (instWUE), and intrinsic water use efficiency (iWUE) were recorded. Mean Pn increased with 12 nM Tl in Serrano and with 0.75 µM V in Poblano. Tl and V increased mean Tr in all three cultivars, while Cd reduced it in Jalapeño and Serrano. Gs was reduced in Jalapeño and Poblano with 5 µM Cd, and 0.75 µM V increased it in Serrano. Ci increased in Poblano with 6 nM Tl, while 12 nM Tl reduced it in Serrano. Mean instWUE increased in Poblano with 10 µM Cd and 0.75 µM V, and in Serrano with 12 nM Tl, while 6 nM Tl reduced it in Poblano and Serrano. Mean iWUE increased in Jalapeño and Poblano with 5 µM Cd, in Serrano with 12 nM Tl, and in Jalapeño with 1.5 µM V; it was reduced with 6 nM Tl in Poblano and Serrano. Pn/Ci increased in Serrano with 5 µM Cd, in Jalapeño with 6 nM Tl, and in Poblano with 0.75 µM V. Interestingly, Tl stimulated six and inhibited five of the seven photosynthetic variables measured, while Cd enhanced three and decreased two variables, and V stimulated five variables, with none inhibited, all as compared to the respective controls. We conclude that Cd, Tl, and V may inhibit or stimulate photosynthetic parameters depending on the genotype and the doses applied.

3.
New Phytol ; 238(4): 1446-1460, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36751879

RESUMEN

We present a robust estimation of the CO2 concentration at the surface of photosynthetic mesophyll cells (cw ), applicable under reasonable assumptions of assimilation distribution within the leaf. We used Capsicum annuum, Helianthus annuus and Gossypium hirsutumas model plants for our experiments. We introduce calculations to estimate cw using independent adaxial and abaxial gas exchange measurements, and accounting for the mesophyll airspace resistances. The cw was lower than adaxial and abaxial estimated intercellular CO2 concentrations (ci ). Differences between cw and the ci of each surface were usually larger than 10 µmol mol-1 . Differences between adaxial and abaxial ci ranged from a few µmol mol-1 to almost 50 µmol mol-1 , where the largest differences were found at high air saturation deficits (ASD). Differences between adaxial and abaxial ci and the ci estimated by mixing both fluxes ranged from -30 to +20 µmol mol-1 , where the largest differences were found under high ASD or high ambient CO2 concentrations. Accounting for cw improves the information that can be extracted from gas exchange experiments, allowing a more detailed description of the CO2 and water vapor gradients within the leaf.


Asunto(s)
Dióxido de Carbono , Células del Mesófilo , Fotosíntesis , Hojas de la Planta , Luz
4.
Heliyon ; 8(1): e08746, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35106387

RESUMEN

Supplying nitrogen to crops through selecting high N fixing legumes and effective inoculant is one of the key strategies to improve crop productivity. However, studies related to the effect of Bradyrhizobial inoculation on leaf growth, its functioning in relation to photosynthesis, and transpiration efficiency (WUE) of cowpea [Vigna unguiculata (L.) Walp] varieties in the tropics were inadequate. A two-year field experiment was conducted at three sites to evaluate the effect of inoculation on leaf growth, gas exchanges and photosynthetic efficiency of cowpea varieties. The study treatments were composed of four varieties, Keti (IT99K-1122), TVU, Black eye bean, and White wonderer trailing and three levels of inoculation (non-inoculated or inoculated with Bradyrhizobium strains CP-24 or CP-37). Gas exchange was measured on live plants at 67-77 days after sowing, between 8:00 to 11:00 a.m. and 14:00 to 16:00 p.m. Leaf growth parameters (leaf number and leaf area) were measured by destructive sampling, and the yield data was determined by harvesting plants in the three central rows at physiological maturity. Variety TVU performed best in terms of leaf number, photosynthesis rate, and WUE. Whereas, Black eye bean revealed superior performances for leaf area, leaf area index, and stomatal conductance compared with the rest two varieties. The effect of inoculation was significant with 14.0, 23.8, 13.7, and 11.0% advantage in leaf area, leaf area index, net photosynthesis, and WUE, respectively. Moreover, the performance of cowpea of the 2018 cropping season showed a relative advantage over 2019 in terms of leaf number, leaf area, leaf area index, net photosynthesis, and stomatal conductance. Therefore, inoculating cowpea varieties with effective Bradyrhizobium strain can be a viable alternative to enhance growth, gas exchange, photosynthetic efficiency, and grain yield.

5.
New Phytol ; 225(6): 2484-2497, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31696932

RESUMEN

The ratio of leaf internal (ci ) to ambient (ca ) partial pressure of CO2 , defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation model uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least-cost optimality hypothesis for modelling historical changes in χ over the 1951-2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely dated tree-ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the intersite variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant-available soil water and other site-specific characteristics might improve the predictions.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Isótopos de Carbono , Hojas de la Planta , Agua
6.
Plants (Basel) ; 7(3)2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30081586

RESUMEN

Whether the mesophyll conductance to CO2 movement (gm) within leaves of C3 plants changes with CO2 concentration remains a matter of debate, particularly at low CO2 concentrations. We tested for changes in gm over the range of sub-stomatal CO2 concentrations (Ci) for which Rubisco activity limited photosynthesis (A) in three plant species grown under the same conditions. Mesophyll conductance was estimated by three independent methods: the oxygen sensitivity of photosynthesis, variable J fluorescence combined with gas exchange, and the curvature of the Rubisco-limited A vs. Ci curve. The latter assay used a new method of rapidly obtaining data points at approximately every 3 µmol mol-1 for Rubisco-limited A vs. Ci curves, allowing separate estimates of curvature over limited Ci ranges. In two species, soybean and sunflower, no change in gm with Ci was detected using any of the three methods of estimating gm. In common bean measured under the same conditions as the other species, all three methods indicated large decreases in gm with increasing Ci. Therefore, change in gm with Ci in the Rubsico-limited region of A vs. Ci curves depended on the species, but not on the method of estimating gm.

7.
Plants (Basel) ; 5(4)2016 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-27973433

RESUMEN

Improving water use efficiency (WUE) may prove a useful way to adapt crop species to drought. Since the recognition of the importance of mesophyll conductance to CO2 movement from inside stomatal pores to the sites of photosynthetic carboxylation, there has been interest in how much intraspecific variation in mesophyll conductance (gm) exists, and how such variation may impact leaf WUE within C3 species. In this study, the gm and leaf WUE of fifteen cultivars of soybeans grown under controlled conditions were measured under standardized environmental conditions. Leaf WUE varied by a factor of 2.6 among the cultivars, and gm varied by a factor of 8.6. However, there was no significant correlation (r = -0.047) between gm and leaf WUE. Leaf WUE was linearly related to the sub-stomatal CO2 concentration. The value of gm affected the ratio of maximum Rubisco carboxylation capacity calculated from the sub-stomatal CO2 concentration to that calculated from the CO2 concentration at the site of carboxylation. That is, variation in gm affected the efficiency of Rubisco carboxylation, but not leaf WUE. Nevertheless, there is considerable scope for genetically improving soybean leaf water use efficiency.

8.
Plant Biol (Stuttg) ; 16(1): 43-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23627372

RESUMEN

In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2 *]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T(stem)), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T(stem) and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T(stem) to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 ± 0.01% under-estimation and 3.97 ± 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pH(x) is in the more sensitive range (pH(x) > 6.5).


Asunto(s)
Carbono/metabolismo , Concentración de Iones de Hidrógeno , Compuestos Inorgánicos/metabolismo , Prunus/metabolismo , Estaciones del Año , Xilema/metabolismo
9.
Physiol Mol Biol Plants ; 17(3): 297-303, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23573022

RESUMEN

The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L.

10.
Oecologia ; 72(4): 542-549, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28312516

RESUMEN

The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO2 concentrations (to 14000 µbar), but fixation of this internal CO2 was 6-10 times slower than fixation of atmospheric CO2 by these stems. Although the pool of CO2 is a trivial source of CO2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO2 fixation in CO2 response curves, light and temperature response curves in IRGA systems, and by means of O2 exchange at CO2 saturation in a leaf disc O2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO2 and O2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA