Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003084

RESUMEN

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Asunto(s)
Cadmio , Compuestos de Hierro , Compuestos de Magnesio , Silicatos , Contaminantes Químicos del Agua , Cadmio/química , Contaminantes Químicos del Agua/química , Compuestos de Magnesio/química , Silicatos/química , Compuestos de Hierro/química , Adsorción , Modelos Químicos , Purificación del Agua/métodos
2.
ACS Appl Mater Interfaces ; 16(34): 44979-44987, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39140380

RESUMEN

The complex interface reactions are crucial to the performance of the Li2MnO3 cathode material. Here, the interface reactions between the liquid electrolyte and the typical surfaces of Li2MnO3 during the charging process are systematically investigated by ab initio molecular dynamics (AIMD) simulation and first-principles calculation. The results indicate that these interface reactions lead to the formation of hydroxide radicals, oxygen, carbon dioxide, carbonate radicals, and other products, which are consistent with the experimental findings. These processes primarily result from the conversion of the stable closed-shell O2- into reactive oxygen ions by electron loss. All surfaces exhibit some degree of layered- and spinel-like phase transitions during the AIMD simulations, consistent with the experiment. This is mainly attributed to the decrease in the Mn-O bond strength and the increase in the Li/O ion vacancy concentration. This study offers valuable theoretical insights into the interface reaction between lithium-rich cathode materials and liquid electrolytes.

3.
Materials (Basel) ; 17(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39203093

RESUMEN

Graphene has been considered an ideal reinforcement in aluminum alloys with its high Young's modulus and fracture strength, which greatly expands the application range of aluminum alloys. However, the dispersion of graphene and the interfacial reaction between graphene and the aluminum matrix limit its application due to elevated temperature. Friction stirring processing (FSP) is regarded as a promising technique to prepare metal matrix composites at lower temperatures. In this paper, FSP was used to prepare graphene-nanoplates-reinforced aluminum composites (GNPs/Al). The corresponding effects of the process parameters and graphene content on GNPs/Al were thoroughly studied. The results showed that plastic strain, heat input, and graphene content were the key influencing factors. Large degrees of plastic strain can enhance the dispersion of graphene by increasing the number of stirring passes and the ratio of stirring to welding velocity, thereby improving the strength of GNPs/Al. Low heat input restricts the plastic flow of graphene in the matrix, whereas excessive heat input can promote interfacial reactions and lead to the formation of a more brittle phase, Al4C3. This is primarily associated with the stirring velocity and welding velocity. High graphene content levels can improve the material strength by refining the grain size, improving the load transfer ability, and acting as a precipitate to prevent dislocation movement. These findings make a contribution to the development of advanced aluminum alloys with graphene reinforcement, offering broader application potential in industries.

4.
Adv Mater ; : e2408875, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205513

RESUMEN

For LiCoO2 (LCO) operated beyond 4.55 V (vs Li/Li+), it usually suffers from severe surface degradation. Constructing a robust cathode/electrolyte interphase (CEI) is effective to alleviate the above issues, however, the correlated mechanisms still remain vague. Herein, a progressively reinforced CEI is realized via constructing Zr─O deposits (ZrO2 and Li2ZrO3) on LCO surface (i.e., Z-LCO). Upon cycle, these Zr─O deposits can promote the decomposition of LiPF6, and progressively convert to the highly dispersed Zr─O─F species. In particular, the chemical reaction between LiF and Zr─O─F species further leads to the densification of CEI, which greatly reinforces its toughness and conductivity. Combining the robust CEI and thin surface rock-salt layer of Z-LCO, several benefits are achieved, including stabilizing the surface lattice oxygen, facilitating the interface Li+ transport kinetics, and enhancing the reversibility of O3/H1-3 phase transition, etc. As a result, the Z-LCO||Li cells exhibit a high capacity retention of 84.2% after 1000 cycles in 3-4.65 V, 80.9% after 1500 cycles in 3-4.6 V, and a high rate capacity of 160 mAh g-1 at 16 C (1 C = 200 mA g-1). This work provides a new insight for developing advanced LCO cathodes.

5.
J Hazard Mater ; 476: 135069, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944988

RESUMEN

The frequent detection of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in various environments has raised concerns owing to its comparable or even higher environmental persistence and toxicity than perfluorooctane sulfonate (PFOS). This study investigated the plasma degradation of F-53B for the first time using a water film plasma discharge system. The results revealed that F-53B demonstrated a higher rate constant but similar defluorination compared to PFOS, which could be ascribed to the introduction of the chlorine atom. Successful elimination (94.8-100 %) was attained at F-53B initial concentrations between 0.5 and 10 mg/L, with energy yields varying from 15.1 to 84.5 mg/kWh. The mechanistic exploration suggested that the decomposition of F-53B mainly occurred at the gas-liquid interface, where it directly reacted with reactive species generated by gas discharge. F-53B degradation pathways involving dechlorination, desulfonation, carboxylation, C-O bond cleavage, and stepwise CF2 elimination were proposed based on the identified byproducts and theoretical calculations. Furthermore, the demonstrated effectiveness in removing F-53B in various coexisting ions and water matrices highlighted the robust anti-interference ability of the treatment process. These findings provide mechanistic insights into the plasma degradation of F-53B, showcasing the potential of plasma processes for eliminating PFAS alternatives in water.

6.
Polymers (Basel) ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891414

RESUMEN

In order to study the microscopic reaction mechanism and kinetic model of Al/PTFE, a reactive force field (ReaxFF) was used to simulate the interface model of the Al/PTFE system with different oxide layer thicknesses (0 Å, 5 Å, 10 Å), and the thermochemical behavior of Al/PTFE at different heating rates was analyzed by simultaneous thermal analysis (TG-DSC). The results show that the thickness of the oxide layer has a significant effect on the reaction process of Al/PTFE. In the system with an oxide layer thickness of 5 Å, the compactness of the oxide layer changes due to thermal rearrangement, resulting in the diffusion of reactants (fluorine-containing substances) through the oxide layer into the Al core. The reaction mainly occurs between the oxide layer and the Al core. For the 10 Å oxide layer, the reaction only exists outside the interface of the oxide layer. With the movement of the oxygen ions in the oxide layer and the Al atoms in the Al core, the oxide layer moves to the Al core, which makes the reaction continue. By analyzing the reaction process of Al/PTFE, the mechanism function of Al/PTFE was obtained by combining the shrinkage volume model (R3 model) and the three-dimensional diffusion (D3 model). In addition, the activation energy of Al/PTFE was 258.8 kJ/mol and the pre-exponential factor was 2.495 × 1015 min-1. The research results have important theoretical significance and reference value for the in-depth understanding of the microscopic chemical reaction mechanism and the quantitative study of macroscopic energy release of Al/PTFE reactive materials.

7.
Materials (Basel) ; 17(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793526

RESUMEN

The distribution of reinforcements and interfacial bonding state with the metal matrix are crucial factors in achieving excellent comprehensive mechanical properties for aluminum (Al) matrix composites. Normally, after heat treatment, graphene nanosheets (GNSs)/Al composites experience a significant loss of strength. Here, better performance of GNS/Al was explored with a hybrid strategy by introducing 0.9 vol.% silicon carbide nanoparticles (SiCnp) into the composite. Pre-ball milling of Al powders and 0.9 vol.% SiCnp gained Al flakes that provided a large dispersion area for 3.0 vol.% GNS during the shift speed ball milling process, leading to uniformly dispersed GNS for both as-sintered and as-extruded (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al. High-temperature heat treatment at 600 °C for 60 min was performed on the as-extruded composite, giving rise to intragranular distribution of SiCnp due to recrystallization and grain growth of the Al matrix. Meanwhile, nanoscale Al4C3, which can act as an additional reinforcing nanoparticle, was generated because of an appropriate interfacial reaction between GNS and Al. The intragranular distribution of both nanoparticles improves the Al matrix continuity of composites and plays a key role in ensuring the plasticity of composites. As a result, the work hardening ability of the heat-treated hybrid (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al composite was well improved, and the tensile elongation increased by 42.7% with little loss of the strength. The present work provides a new strategy in achieving coordination on strength-plasticity of Al matrix composites.

8.
ACS Appl Mater Interfaces ; 16(23): 30598-30606, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818707

RESUMEN

Interdiffusion and solid-solid phase reaction at the interface between thermoelectric (TE) materials and the electrode critically influence interfacial transport properties and the overall energy conversion efficiency during service. Here, the microstructural evolution and diffusion mechanisms at the interfaces between the most widely used Bi2Te3-based TE materials, n-type Bi2Te2.7Se0.3 (BTS) and p-type Bi0.5Sb1.5Te3 (BST), and Ni electrodes were investigated at atomic resolution using spherical aberration-corrected scanning transmission electron microscopy (STEM). The BTS(0001)/Ni and BST(0001)/Ni interfaces were constructed by depositing Ni nanoparticles on mechanically exfoliated BTS and BST bulk materials and subsequent annealing. The interfacial reaction is initially dominated by Ni diffusion into the TE matrix to form NiAs-type NiM intermetallics, while Ni trans-quintuple-layer diffusion only occurs in Sb-rich BST. The Bi-rich BTS is more influenced by the Ni-Te preferential reaction, resulting in NiM abnormal grain growth and the formation of tilted and rotated interfaces. Bi diffusion into the BTS matrix forms a Bi double layer at the interface or Bi2[Bi2(Te,Se)3] as the annealing temperature increases, while Bi diffusion into the Ni thin film greatly accelerates the interfacial reaction rate, as elucidated by in situ heating STEM. The results provide essential structural details to understand and prevent the degradation of TE device performance.

9.
Nanomaterials (Basel) ; 14(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38607174

RESUMEN

Diamond/aluminum composites have attracted significant attention as novel thermal management materials, with their interfacial bonding state and configuration playing a crucial role in determining their thermal conductivity and mechanical properties. The present work aims to evaluate the bending strength and thermal conductivity of CNT-modified Ti-coated diamond/aluminum composites with multi-scale structures. The Fe catalyst was encapsulated on the surface of Ti-coated diamond particles using the solution impregnation method, and CNTs were grown in situ on the surface of Ti-coated diamond particles using the plasma-enhanced chemical vapor deposition (PECVD) method. We investigated the influence of interface structure on the thermal conductivity and mechanical properties of diamond/aluminum composites. The results show that the CNT-modified Ti-coated diamond/aluminum composite exhibits excellent bending strength, reaching up to 281 MPa, compared to uncoated diamond/aluminum composites and Ti-coated diamond/aluminum composites. The selective bonding between diamond and aluminum was improved by the interfacial reaction between Ti and diamond particles, as well as between CNT and Al. This led to the enhanced mechanical properties of Ti-coated diamond/aluminum composites while maintaining acceptable thermal conductivity. This work provides insights into the interface's configuration design and the performance optimization of diamond/metal composites for thermal management.

10.
J Colloid Interface Sci ; 667: 282-290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640648

RESUMEN

Se-based cathodes have caught tremendous attention owing to their comparable volumetric capacity and better electronic conductivity to S cathodes. However, its low utilization ratio and sluggish redox kinetics due to the high reaction barrier of solid-phase transformation from Se to Li2Se limit its practical application. Herein, an in-situ texturing hollow carbon host by gas-solid interface reaction anchored with Fe single-atomic catalyst is designed and prepared for advanced Li-Se batteries. This Se host presents high pore volume of 1.49 cm3 g-1, Fe single atom content of 1.53 wt%, and its specific structure protects single-atomic catalyst from the destructive reaction environment, thus balancing catalytic activity and durability. After Se loading by reduction of H2SeO3, this homogenous Se-based cathode delivers a superior rate capacity of 431.3 mA h g-1 at 4C, and great discharge capacity of 301.8 mA h g-1 after 1000 cycles at 10C, with high Li-ion diffusion coefficient and capacitance-contributed ratio. The distribution of relaxation times analysis verifies solid-phase transformation mechanism of this cathode and density functional theory calculations confirm the adsorption and bidirectionally catalysis effect of Fe single-atomic catalyst. This work provides a new strategy to prepare high-efficient Se cathode associated with non-noble metal single atoms for high-performance Li-Se batteries.

11.
Adv Sci (Weinh) ; 11(21): e2309111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501909

RESUMEN

Nickel oxide (NiOx)-based inverted perovskite solar cells stand as promising candidates for advancing perovskite photovoltaics towards commercialization, leveraging their remarkable stability, scalability, and cost-effectiveness. However, the interfacial redox reaction between high-valence Ni4+ and perovskite, alongside the facile conversion of iodide in perovskite into I2, significantly deteriorates the performance and reproducibility of NiOx-based perovskite photovoltaics. Here, potassium borohydride (KBH4) is introduced as a dual-action reductant, which effectively avoids the Ni4+/perovskite interface reaction and mitigates the iodide-to-I2 oxidation within perovskite film. This synergistic redox modulation significantly suppresses nonradiative recombination and increases the carrier lifetime. As a result, an impressive power conversion efficiency of 24.17% for NiOx-based perovskite solar cells is achieved, and a record efficiency of 20.2% for NiOx-based perovskite solar modules fabricated under ambient conditions. Notably, when evaluated using the ISOS-L-2 standard protocol, the module retains 94% of its initial efficiency after 2000 h of continuous illumination under maximum power point at 65 °C in ambient air.

12.
J Cutan Pathol ; 51(3): 184-192, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967577

RESUMEN

Melanotic cutaneous lupus erythematosus (LE) is a newly described clinical variant of chronic cutaneous LE, presenting with localized or diffuse brownish or grayish macular and reticulated pigmentation in the absence of erythema, scaling, atrophy, scarring, or telangiectasia. The diagnosis is based upon histopathology, which demonstrates the characteristic features of LE with an interface vacuolar dermatitis with melanophages, and a superficial and deep, perivascular and periadnexal lymphocytic infiltrate with mucin deposition. Herein, we describe a case of a 61-year-old White male presenting with melanotic cutaneous LE with a blaschkoid distribution on his face in which the histopathological phenomenon of "true melanocytic nests" in the setting of a lichenoid pattern was seen. We want to highlight how nests of cellular aggregates at the dermoepidermal junction labeling with melanocytic markers may occur in the setting of an interface tissue reaction. This benign reactional pattern may mimic atypical melanocytic proliferations, especially on sun-damaged skin. Clinicopathological correlation and careful microscopic examination using a panel of multiple melanocytic markers is crucial for making an accurate final diagnosis. All the cases of melanotic cutaneous LE reported in the literature are also reviewed.


Asunto(s)
Dermatitis , Lupus Eritematoso Cutáneo , Lupus Eritematoso Discoide , Humanos , Masculino , Persona de Mediana Edad , Melanocitos/patología , Lupus Eritematoso Cutáneo/diagnóstico , Lupus Eritematoso Cutáneo/patología , Lupus Eritematoso Discoide/patología , Dermatitis/patología , Diagnóstico Diferencial
13.
J Hazard Mater ; 465: 133398, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38160556

RESUMEN

In this work, nitrogen-doped SiO2 (N-SiO2) was successfully synthesized to develop an "adsorption-photocatalytic degradation" water purification technology to remove hydrophobic organic contaminants (HOCs). As a representative of HOCs, decabromodiphenylethane (DBDPE) could be efficiently degraded under simulated sunlight after adsorption on the surface of N-SiO2. Due to the generation of reactive oxygen species (ROS) and silicon-based radicals, the photodegradation rate of DBDPE on water-SiO2 interface was 1.5-fold higher than that in water. Furthermore, the transformation pathways of DBDPE on N-SiO2 surface were compared with that in water. Bond breaking and debromination reactions were the common pathways, while hydroxylation and silicon-based substitution reactions were the specific transformation pathways for DBDPE on the surface of N-SiO2. Density functional theory (DFT) calculation was used to reveal the generation mechanism of silicon-based radicals and determine the rationality of the involvement of silicon-based radicals in DBDPE transformation. The energy barriers of silicon-based substitution reaction were comparable to that of hydroxylation and debromination reactions, which confirmed the plausibility of the generation of silicon-based substitution products. This study provides an efficient method for the disposal of HOCs, which also gives some new insights into the conversion mechanism of organic pollutants mediated by silicon-based radicals.

14.
ACS Appl Mater Interfaces ; 15(50): 58613-58622, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051757

RESUMEN

The resistive switching response of two terminal metal/oxide/metal devices depends on the stoichiometry of the oxide film, and this is commonly controlled by using a reactive metal electrode to reduce the oxide layer. Here, we investigate compositional and structural changes induced in Nb/Nb2O5 bilayers by thermal annealing at temperatures in the range of 573-973 K and its effect on the volatile threshold switching characteristics of Nb/Nb2O5/Pt devices. Changes in the stoichiometry of the Nb and Nb2O5 films are determined by Rutherford backscattering spectrometry and energy-dispersive X-ray (EDX) mapping of sample cross sections, while the structure of the films is determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy (TEM). Such analysis shows that the composition of the Nb and Nb2O5 layers is homogenized by interdiffusion at temperatures less than the crystallization temperature (i.e., >773 K) but that this effectively ceases once the films crystallize. This is explained by comparison with the predictions of a simple diffusion model which shows that the compositional changes are dominated by oxygen diffusion in the amorphous oxide, which is much faster than that in the crystalline phases. We further show that these compositional and structural changes have a significant effect on the electroforming and threshold switching characteristics of the devices, the most significant being a marked increase in their reliability and endurance after crystallization of the oxide films. Finally, we examine the effect of annealing on the quasistatic negative differential resistance characteristics and oscillator dynamics of devices and use a lumped element model to show that this is dominated by changes in the device capacitance resulting from interdiffusion.

15.
Heliyon ; 9(12): e22723, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125460

RESUMEN

A highly efficient reactor with a stirring device was specially designed with the intent of performing the hydrolysis of pure crystalline cellulose using a carbon-based solid acid catalyst. This catalyst comprised an amorphous carbon-based material bearing -SO3H, -COOH and -OH groups. The stirring apparatus had seven blades coated with polytetrafluoroethylene and arranged axially at regular intervals with a 60° offset. This design proved highly effective, providing double the glucose yield compared with conventional stirring systems. The basic properties of this novel reactor were investigated and analyzed and are discussed herein.

16.
Sci Total Environ ; 904: 166976, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704153

RESUMEN

Cement kiln co-processing is becoming the main strategy to dispose of hazardous waste containing Cr. A newly-discovered pentavalent Cr compound, which was proved to be formed during cement kiln co-processing of solid waste, is partly responsible for the water-soluble Cr released from the cement. However, the formation characteristics and the solubility of Cr(V) are still unclear to date. In this study, the reaction kinetics and further redox reactions of Cr(V) at high temperature were examined, and its crystal structure and solubility were also explored. At the temperature range of 1000-1200 °C, the formation rate of Ca5(CrO4)3O0.5 reached over 90 % within 10 min, and then slowly increased to near 100 % from 10 min to 10 h. shows that Ca5(CrO4)3O0.5 is formed by interface reaction at an early period, and by diffusion at a later period. The kinetic analysis indicates that Ca5(CrO4)3O0.5 is initially formed through an interface reaction and subsequently through diffusion. Ca5(CrO4)3O0.5 was identified and assigned as hexagonal crystal group (P63/m). Approximately 0.55 g and 0.15 g of Ca5(CrO4)3O0.5 dissolve in neutral water at 100 °C and 50 °C, and the concentrations of Cr(V) in water reach 550 and 150 mg/L, respectively. Additionally, this study finds that at the temperature range of 400-700 °C Ca5(CrO4)3O0.5 can be oxidized into CaCrO4, and at the temperature higher than 1400 °C, it can be further converted into Ca3(CrO4)2 and reduced into CaCr2O4. This study gives a deep insight into Cr oxidation-reduction reaction during thermal treatment of solid waste. These insights provide a comprehensive understanding of Cr oxidation-reduction reactions during the thermal treatment of solid waste, offering valuable guidance for waste management strategies.

17.
ACS Appl Mater Interfaces ; 15(25): 30060-30069, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37314432

RESUMEN

Li-rich layered oxide (LLO) cathode materials with mixed cationic and anionic redox reactions display much higher specific capacity than other traditional layered oxide materials. However, the practical specific capacity of LLO during the first cycle in sulfide all-solid-state lithium-ion batteries (ASSLBs) is extremely low. Herein, the capacity contribution of each redox reaction in LLO during the first charging process is qualitatively and quantitatively analyzed by comprehensive electrochemical and structural measurements. The results demonstrate that the cationic redox of the LiTMO2 (TM = Ni, Co, Mn) phase is almost complete, while the anionic redox of the Li2MnO3 phase is seriously limited due to the sluggish transport kinetics and severe LLO/Li6PS5Cl interface reaction at high voltage. Therefore, the poor intrinsic conductivity and interface stability during the anionic redox jointly restrict the capacity release or delithiation/lithiation degree of LLO during the first cycle in sulfide ASSLBs. This study reveals the origin of the seriously limited anionic redox reaction in LLO, providing valuable guidance for the bulk and interface design of high-energy-density ASSLBs.

18.
Sci Total Environ ; 891: 164503, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257598

RESUMEN

Nicotine is the most abundant alkaloid compound in cigarette smoke and a known "emerging contaminant" in gas and aqueous environments. The main environmental behavior of nicotine is to be deposited on various surfaces. Aerosol droplets have a rich specific surface area, which has a great influence on air quality and human health. However, the microscopic interaction between aqueous nanoparticles and nicotine has not been revealed. In this work, the theoretical simulation of the adsorption and reaction properties of nicotine onto aerosol droplets is performed. The strong preference for nicotine on aqueous particle surfaces is firstly proven, and its interface retention rate is about 73 %, 4-7 times larger than that in the air/water phase. The k value of the interface reaction (heterogeneous reaction) is 4.34 × 10-9 cm3 molecule-1 s-1, which is about 80 and 571 times higher than that of the gaseous and aqueous reactions (homogeneous reaction). Interface environment can promote the oxidation of nicotine by •OH, and indirectly promote the rapid generation of toxic HNCO. The reaction rate constant of nicotine with •OH decreases with the increase of aerosol acidity, subsequently impeding the formation of HNCO. Considering the larger rate constant at the interface environment, the total effect of aqueous aerosol should be to improve the formation of HNCO. This work provides insight into the adsorption and oxidation of nicotine on the surface of the aerosol and is helpful in accurately evaluating its environmental fate and risk.

19.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982477

RESUMEN

Criegee intermediates (CIs) are important in the sink of many atmospheric substances, including alcohols, organic acids, amines, etc. In this work, the density functional theory (DFT) method was used to calculate the energy barriers for the reactions of CH3CHOO with 2-methyl glyceric acid (MGA) and to evaluate the interaction of the three functional groups of MGA. The results show that the reactions involving the COOH group of MGA are negligibly affected, and that hydrogen bonding can affect the reactions involving α-OH and ß-OH groups. The water molecule has a negative effect on the reactions of the COOH group. It decreases the energy barriers of reactions involving the α-OH and ß-OH groups as a catalyst. The Born-Oppenheimer molecular dynamic (BOMD) was applied to simulate the reactions of CH3CHOO with MGA at the gas-liquid interface. Water molecule plays the role of proton transfer in the reaction. Gas-phase calculations and gas-liquid interface simulations demonstrate that the reaction of CH3CHOO with the COOH group is the main pathway in the atmosphere. The molecular dynamic (MD) simulations suggest that the reaction products can form clusters in the atmosphere to participate in the formation of particles.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Aminas , Atmósfera , Protones
20.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678061

RESUMEN

The stability of diamond/aluminum composite is of significant importance for its extensive application. In this paper, the interface of diamond/aluminum composite was modified by adding nanoscale W coating on diamond surface. We evaluated the corrosion rate of nanoscale W-coated and uncoated diamond/aluminum composite by a full immersion test and polarization curve test and clarified the corrosion products and corrosion mechanism of the composite. The introduction of W nanoscale coating effectively reduces the corrosion rate of the diamond/aluminum composite. After corrosion, the bending strength and thermal conductivity of the nanoscale W-coated diamond/aluminum composite are considerably higher than those of the uncoated diamond/aluminum composite. The corrosion loss of the material is mainly related to the hydrolysis of the interface product Al4C3, accompanied by the corrosion of the matrix aluminum. Our work provides guidance for improving the life of electronic devices in corrosive environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA