Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 4): 134954, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187105

RESUMEN

Fiber-reinforced biocomposites were widely considered as the optimal sustainable alternative to traditional petroleum-based polymers due to their renewable, degradable, and environmentally friendly characteristics, along with economic benefits. However, the poor interfacial bonding between the matrix and natural fiber reinforcement remained a key issue limiting their mechanical and thermal properties. Focusing on cost-effective, convenient, and low-pollution chemical methods, this work proposed a strategy for in-situ synthesis of composite structures on bamboo fiber (BF) surfaces. Crude chitosan (CS) and reclaimed tannic acid (TA) were utilized as the raw materials, to construct stereo-netlike chitosan @ tannin structures (CS@TA) via a one-pot method facilitated by hydrogen bonding and complexation. The influence of reactant concentration and pH value on the process was further investigated and optimized. The CS@TA structure improved the interfacial bonding between the BF reinforcement and matrix poly(3-hydroxybutyrate) (PHB), and this non-amino-driven construction provided a potential reaction platform for functionalizing the interfacial layer. The modified biocomposite showed improvements in tensile and impact strengths (51.58 %, 41.18 %), also in tensile and flexural moduli (13.59 %, 26.88 %). Enhancements were also observed in thermal properties and heat capacity. This work presents a simple and promising approach to increase biocomposite interface bonding.


Asunto(s)
Quitosano , Hidroxibutiratos , Poliésteres , Taninos , Quitosano/química , Taninos/química , Poliésteres/química , Hidroxibutiratos/química , Resistencia a la Tracción , Sasa/química , Materiales Biocompatibles/química , Concentración de Iones de Hidrógeno , Tecnología Química Verde/métodos , Polihidroxibutiratos
2.
Angew Chem Int Ed Engl ; : e202412042, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149940

RESUMEN

Poor operational stability is a crucial factor limiting the further application of perovskite solar cells (PSCs). Organic semiconductor layers can be a powerful means for reinforcing interfaces and inhibiting ion migration. Herein, two hole-transporting molecules, pDPA-SFX and mDPA-SFX, are synthesized with tuned substituent connection sites. The meta-substituted mDPA-SFX results in a larger dipole moment, more ordered packing, and better charge mobility than pDPA-SFX, accompany with strong interface bonding on perovskite surfaces and suppressed ion motion as well. Importantly, mDPA-SFX-based PSCs exhibit an efficiency that has significantly increased from 22.5% to 24.8% and a module-based efficiency of 19.26% with an active area of 12.95 cm2. The corresponding cell retain 94.8% of its initial efficiency at maximum power point tracking (MPPT) after 1,000 h (T95 = 1,000 h). The MPPT T80 lifetime is as long as 2,238 h. This work illustrates that a small degree of structural variation in organic compounds leaves considerable room for developing new HTMs for light stable PSCs.

3.
Molecules ; 29(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930885

RESUMEN

Carboxymethyl cellulose (CMC) and polylactic acid (PLA) are recognized for their environmental friendliness. By merging them into a composite film, packaging solutions can be designed with good performance. Nonetheless, the inherent interface disparity between CMC and PLA poses a challenge, and there may be layer separation issues. This study introduces a straightforward approach to mitigate this challenge by incorporating tannin acid and ferric chloride in the fabrication of the CMC-PLA. The interlayer compatibility was improved by the in situ formation of a cohesive interface. The resulting CMC/TA-PLA/Fe multilayer film, devoid of any layer separation, exhibits exceptional mechanical strength, with a tensile strength exceeding 70 MPa, a high contact angle of 105°, and superior thermal stability. Furthermore, the CMC/TA-PLA/Fe film demonstrates remarkable efficacy in blocking ultraviolet light, effectively minimizing the discoloration of various wood surfaces exposed to UV aging.

4.
ACS Appl Mater Interfaces ; 16(24): 31756-31767, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38837185

RESUMEN

High-performance thin films combining large optical bandgap Al2O3 and high refractive index HfO2 are excellent components for constructing the next generation of laser systems with enhanced output power. However, the growth of low-defect plasma-enhanced-atomic-layer-deposited (PEALD) Al2O3 for high-power laser applications and its combination with HfO2 and SiO2 materials commonly used in high-power laser thin films still face challenges, such as how to minimize defects, especially interface defects. In this work, substrate-layer interface defects in Al2O3 single-layer thin films, layer-layer interface defects in Al2O3-based bilayer and trilayer thin films, and their effects on the laser-induced damage threshold (LIDT) were investigated via capacitance-voltage (C-V) measurements. The experimental results show that by optimizing the deposition parameters, specifically the deposition temperature, precursor exposure time, and plasma oxygen exposure time, Al2O3 thin films with low defect density and high LIDT can be obtained. Two trilayer anti-reflection (AR) thin film structures, Al2O3/HfO2/SiO2 and HfO2/Al2O3/SiO2, were then prepared and compared. The trilayer AR thin film with Al2O3/HfO2/SiO2 structure exhibits a lower interface defect density, better interface bonding performance, and an increase in LIDT by approximately 2.8 times. We believe these results provide guidance for the control of interface defects and the design of thin film structures and will benefit many thin film optics for laser applications.

5.
Materials (Basel) ; 16(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959444

RESUMEN

In this study, Al-B4C/Al laminated composites with high interlayer bonding strength were fabricated by integrated hot-pressed sintering accompanied with hot rolling. The mechanical properties and interface behavior of the Al-B4C/Al laminated composites were investigated under quasi-static and impact loading. The results show that the Al-B4C/Al laminated composites obtain a high interface bonding strength, because no interlayer delamination occurs even after fractures under quasi-static and impact loads. The Al-B4C/Al laminated composites exhibit a better comprehensive mechanical performance, and the fracture can be delayed due to the high bonding strength interface. Moreover, laminated composites can absorb more impact energy than the monolithic material under impact loading due to the stress transition and relaxation.

6.
Materials (Basel) ; 16(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37959596

RESUMEN

This study aims to address the issues posed by frost damage to concrete structures in cold regions, focusing on reinforcement and repair methods to increase the service life of existing structures instead of costly reconstruction solutions. Due to the limitations of conventional concrete in terms of durability and strength, this research focused on ultra-high-performance concrete (UHPC) by replacing part of the cement with recycled brick powder (RBP) to strengthen ordinary C50 concrete, obtaining UHPC-NC specimens. Mechanical tests investigated the bonding performance of UHPC-NC specimens under various conditions, including interface agents, surface roughness treatments, and freeze-thaw after 0, 50, 100, and 150 cycles with a 30% replacement rate of RBP. Additionally, a multi-factor calculation formula for interface bonding strength was established according to the test data, and the bonding mechanism and model were analyzed through an SEM test. The results indicate that the interface bonding of UHPC-NC specimens decreased during salt freezing compared to hydro-freezing, causing more severe damage. However, the relative index of splitting tensile strength for cement paste specimens showed increases of 14.01% and 14.97%, respectively, compared to specimens without an interface agent. Using an interface agent improved bonding strength and cohesiveness. The UHPC-NC bonding model without an interfacial agent can be characterized using a three-zone model. After applying an interfacial agent, the model can be characterized by a three-zone, three-layer bonding model. Overall, the RBP-UHPC-reinforced C50 for damaged concrete showed excellent interfacial bonding and frost resistance performance.

7.
Angew Chem Int Ed Engl ; 62(36): e202305123, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462518

RESUMEN

Tantalum nitride (Ta3 N5 ) has emerged as a promising photoanode material for photoelectrochemical (PEC) water splitting. However, the inefficient electron-hole separation remains a bottleneck that impedes its solar-to-hydrogen conversion efficiency. Herein, we demonstrate that a core-shell nanoarray photoanode of NbNx -nanorod@Ta3 N5 ultrathin layer enhances light harvesting and forms a spatial charge-transfer channel, which leads to the efficient generation and extraction of charge carriers. Consequently, an impressive photocurrent density of 7 mA cm-2 at 1.23 VRHE is obtained with an ultrathin Ta3 N5 shell thickness of less than 30 nm, accompanied by excellent stability and a low onset potential (0.46 VRHE ). Mechanistic studies reveal the enhanced performance is attributed to the high-conductivity NbNx core, high-crystalline Ta3 N5 mono-grain shell, and the intimate Ta-N-Nb interface bonds, which accelerate the charge-separation capability of the core-shell photoanode. This study demonstrates the key roles of nanostructure design in improving the efficiency of PEC devices.

8.
Int J Biol Macromol ; 244: 125345, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327928

RESUMEN

Nowadays, green, clean, and efficient sustainable development has become the world's mainstream industrial development. However, the bamboo/wood industry is still in the status quo with high fossil resource dependence and significant greenhouse gas emissions. Herein, a low-carbon and green strategy to produce bamboo composites is developed. The bamboo interface was modified directionally to a bamboo carboxy/aldehyde interface by using a TEMPO/NaIO4 system, and then chemically cross-linked with chitosan to produce active bonding bamboo composite (ABBM). It was confirmed that the chemical bond cross-linking (CN, N-C-N, electrostatic interactions, hydrogen bonding) in the gluing region was helpful to obtain the excellent dry bonding strength (11.74 MPa), water resistance (5.44 MPa), and anti-aging properties (decreased by 20 %). This green production of ABBM solves the problem of poor water resistance and aging resistance of all-biomass-based chitosan adhesives. It can replace bamboo composites produced using fossil-based adhesives to meet the requirements of the construction, furniture, and packaging industries, changing the previous situation of composite materials requiring high temperature pressing and highly dependent on fossil-based adhesives. This provides a greener and cleaner production method for the bamboo industry, as well as more options for the global bamboo industry to achieve green and clean production goals.


Asunto(s)
Quitosano , Carbono , Madera , Agua/química
9.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177297

RESUMEN

Core-shell composites with strong weather resistance, mechanical strength and creep resistance can be prepared using co-extrusion technology. Considering the weak bonding strength between core-shell interfaces, this study started from the concept of a mortise and tenon combination; three types of conical, rectangular and trapezoidal mortise and tenon joints were prepared, and their bending properties, long-term creep properties, interfacial bonding properties, and dimensional stability properties were tested. Results showed that the mortise and tenon structure could form a mechanical interlock between the outer-shell-layer polyvinyl chloride (PVC) wood-plastic composite (WPVC) and the inner-core-layer laminated veneer lumber (LVL), which could effectively improve the interface bonding property between the two layers. Among them, the trapezoidal mortise and tenon structure had the largest interface bonding force compared with the tapered and rectangular mortise and tenon structure, where the interface bonding strength reached 1.01 MPa. Excellent interface bonding can effectively transfer and disperse stress, so the trapezoidal mortise and tenon structure had the best bending properties and creep resistance, with a bending strength of 59.54 MPa and a bending modulus of 5.56 GPa. In the long-term creep test, the deformation was also the smallest at about 0.2%, and its bending properties, creep resistance and interface bonding performance were also the best. The bending strength was 59.54 MPa and the bending modulus was 5.56 GPa; in the long-term creep test, the strain curve was the lowest, about 0.2%. In addition, the mortise and tenon structure could disperse the stress of the inner shell LVL after water absorption and expansion, thus significantly improving the dimensional stability of the co-extruded composite after water absorption.

10.
Micromachines (Basel) ; 14(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36838131

RESUMEN

Based on the first-principles method, TiAlSiN/WC-Co interface models with graphene doped into the matrix, coating, and the coating/matrix are constructed. The interface adhesion work is calculated and modeled to study the interface bonding properties from the atomic microscopic point of view. The results show that the interface bonding properties of TiAlSiN/WC-Co can be improved when the matrix is doped with the main surface of intrinsic graphene, and the interface bonding property of TiAlSiNN/WC-Co can be improved when the coating and coating/matrix are doped separately with the main surface of intrinsic graphene or single vacancy defective graphene. Furthermore, the model electronic structures are analyzed. The results show that there exist strong Si/Co and N/Co covalent bonds in the interfaces when the matrix is doped with the main surface of intrinsic graphene, which causes the adhesion work of TiAlSiN/WC/msGR/Co to be greater than that of TiAlSiN/WC-Co. Additionally, when the graphene is doped into the coating, in the interface of TiAlSiN/msGR/TiAlSiNN/WC-Co, there exist strong N/Co covalent bonds that increase the interface adhesion work. Additionally, more charge transfer and orbital hybridization exist in the coating/matrix interface doped with the main surface of intrinsic graphene or single vacancy defective graphene, which explains the essential mechanism that the adhesion work of TiAlSiNN/msGR/WC-Co is greater than that of TiAlSiNN/WC-Co, and the adhesion work of TiAlSiNN/svGR/WC-Co is greater than that of TiAlSiNN/WC-Co.

11.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558299

RESUMEN

The dispersion of carbon nanotubes (CNTs) is the bottleneck in CNT-reinforced metal matrix composites. In this work, CNT/Mg composites were prepared by grinding Mg powder and then dispersing CNTs via ball milling and hot pressing. The uniform distribution of Ni-coated CNTs in the matrix was achieved by optimizing the content of CNTs. Scanning electron microscope, high-resolution transmission electron microscopy and X-ray diffraction, optical microscopy, and compression tests were employed. With the CNT content being less than 1%, the CNTs can be evenly distributed in CNT/Mg composites, resulting in a sharp increase in strength. However, with the higher CNT content, the CNTs gradually cluster, leading decreased fracture strain and strength. Furthermore, the coated Ni in the CNTs reacts with the magnesium matrix and completely transforms into Mg2Ni, significantly enhancing the interface bonding. This strong interface bonding and the diffusely distributed Mg2Ni in the matrix significantly strengthen the CNT/Mg composite.

12.
J Colloid Interface Sci ; 625: 109-118, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35714403

RESUMEN

Constructing oxygen vacancies (OVs) with desired concentration and stability on the surfaces of semiconductors has been demonstrated to be a powerful tactic to enhance their photocatalytic performances. Nevertheless, forming OVs usually requires rigorous conditions, and OVs harshly suffer from deactivation during photoreaction. Herein, a facile strategy is developed to introduce surface OVs with tunable concentrations and long-term stability in bismuth-based semiconductors (BBS) through organic small-molecule surface-bonding. Taking I-doped BiOCl (I-BiOCl) as a model photocatalyst and catechol and its derivatives as ligands, a series of organic/I-BiOCl bonded hybrid photocatalysts are successfully synthesized. Compared with I-BiOCl, hybrid photocatalysts exhibited substantially enhanced catalytic activity toward multiple contaminants removal. Experimental characterizations and DFT calculations reveal a strong interfacial interaction between organic ligands and BBS through the formation of BiOC bonds, which lengthen Bi-O bonds within [Bi2O2]2+ structural units and reduce the formation energy of OVs, facilitating the escape of lattice O atoms and thus producing abundant surface OVs. More importantly, the concentration of OVs can be easily regulated by controlling the number of organic ligands, and the OVs exhibit high stability during photoreaction, attributing to the existence of high-valence-state Bi(3+x)+ that is near the OVs, which would not be re-oxidized by oxidative species like the low-valence-state Bi(3-x)+, that is, they would not be reset to original Bi3+. As a verification of its universality, the surface bonded strategy has been successfully extended to other BBS.

13.
Materials (Basel) ; 15(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35591448

RESUMEN

In this study, the silica fume replacement rate, fly ash replacement rate, and curing temperature were regarded as the independent variables, and the compressive and flexural strengths were regarded as the response values. The response surface method was used to construct the response surface polynomial regression model and obtain the optimal preparation parameters of a steel slag cement-based gel slurry (SCGS). The univariate and multivariate effects on the SCGS's strength were investigated via analysis of variance and a three-dimensional surface model, and the hydration products and strength development law were characterized via scanning electron microscopy and X-ray diffraction. The actual compressive strengths at 3 and 28 d of age were 31.78 and 53.94 MPa, respectively, which were close to the predicted values (32.59 and 55.81 MPa, respectively), demonstrating that the optimized strengths were accurate and reliable. Further, the hydration reaction rate of SiO2 in the silica fume and the physical filling effect of the inert components of fly ash and steel slag under the optimal parameters were the key factors for the early strength of the material. Moreover, continuous C3S hydration in steel slag and the continuous excitation of the volcanic ash properties of fly ash were important factors for the later strength.

14.
Materials (Basel) ; 15(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35407809

RESUMEN

In response to the current common disease of concrete leveling overlays of bridge pavement in China, the feasibility of using an economic SSPP-ECC with local waste superfine sand as an alternative material for a leveling overlay was proposed in this study. To evaluate the interface bonding property in the girder between the SSPP-ECC and concrete, a slant shear test and split tensile test were designed to study the interfacial shear and tensile properties of the ordinary concrete/ordinary concrete (OC/OC) and ordinary concrete/SSPP-ECC (OC/ECC), where the results showed that SSPP-ECC could significantly improve the interface shear stress and split tensile strength compared to ordinary concrete. Furthermore, the damage status of OC/ECC no longer involved fracturing along the interface; instead, each of the two substrates was partially destroyed, which revealed that OC/ECC had a high bonding effect. Moreover, a restrained shrinkage test was carried out to evaluate the shrinkage property of SSPP-ECC, where the result showed that the shrinkage strain of SSPP-ECC was slightly lower than concrete, where the average cracking time for SSPP-ECC was far longer than for ordinary concrete under the same ambient drying conditions; furthermore, the stress rate for SSPP-ECC revealed that it was a low-cracking-risk material. Meanwhile, the crack width of SSPP-ECC was only 0.1 mm after 35 d, which showed that SSPP-ECC had a more substantial crack width control capacity relative to concrete. The test results initially verified the feasibility and great potential of economic SSPP-ECC applied in a bridge pavement leveling overlay.

15.
ACS Appl Mater Interfaces ; 14(10): 12684-12692, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230813

RESUMEN

Despite the fact that synthetic adhesives have achieved great progress, achieving robust dry/wet adhesion under harsh operating environments is still challenging. Herein, inspired from the extraordinary adhesion mechanism of nature mussel protein adhesive, the balanced design concept of co-adhesion and interfacial adhesion is proposed to prepare one kind of novel copolymer adhesive of [poly(dopamine methacrylamide-co-methoxethyl acrylate-co-adamantane-1-carboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester)] [p(DMA-co-MEA-co-AD)], named as super-robust adhesive (SRAD). The SRAD exhibits ultra-high interface bonding strengths in air (∼7.66 MPa) and underwater (∼2.78 MPa) against an iron substrate. Especially, a greatly tough and stable adhesion strength (∼2.11 MPa) can be achieved after immersing the bonded sample in water for half a year. Furthermore, the SRAD demonstrates surprising wet bonding robustness/tolerance even encountering harsh conditions such as fluid shearing, dynamic loading, and cyclic mechanical fretting. The great advantages of SRAD, such as strong interface bonding, stable wet adhesion underwater, and good mechanical tolerance, makes it demonstrate huge application potential in engineering sealants and underwater adhesion.

16.
Materials (Basel) ; 15(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35057376

RESUMEN

The growing applications of iron/copper bimetallic composites in various industries are increasing. The relationship between the properties of these materials and manufacturing parameters should be well understood. This paper represents an experimental study to evaluate the effect of reinforcement (steel rod) preheating temperature on the mechanical properties (bond strength, microhardness, and wear resistance) of copper matrix composites (QMMC). In preparing the QMMC samples, the melted copper was poured on a steel rod that had been preheated to various temperatures, namely, room temperature, 600 °C, 800 °C, and 1200 °C. Properties of the QMMC (interface microstructure, interfacial bonding strength, microhardness, and wear) were investigated. The experimental results revealed that the best bond between the copper matrix and steel rod formed only in the composites prepared by preheating the steel rods with temperatures lower than the recrystallization temperature of steel (723 °C). This is because the oxide layer and shrinkage voids (due to the difference in shrinkage between the two metals) at the interface hinder atom diffusion and bond formation at higher temperatures. The microhardness test showed that preheating steel rod to 600 °C gives the highest value among all the samples. Furthermore, the QMMC's wear behavior confirmed that the optimization of preheating temperature is 600 °C.

17.
Environ Sci Pollut Res Int ; 29(1): 1314-1323, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34350577

RESUMEN

Urease-producing bacteria (UPB) could be used to cement loose sand particles. The UPB would produce free ammonia and carbon dioxide during the process of hydrolyzing urea, and part of the free ammonia would be discharged into the air to cause certain pollution to the atmospheric environment. The carbon dioxide could react with alkaline oxide to form carbonates and improved the strength in GGBS comparing with medium containing different concentrations of urea. By adding hydrogen phosphate ions and magnesium salts, free ammonia could be converted into environmentally friendly magnesium ammonium phosphate. The mixture of biological magnesium ammonium phosphate and basic magnesium carbonate could be synthesized through the bio-mineralization process. Through the pre-precipitation mixing process, the loose sand particles could be cemented into a whole. Scanning electron microscopy (SEM) images of the sand column showed that the mixture of biological magnesium ammonium phosphate and basic magnesium carbonate could better fill in the pores of sand grains. In the pre-precipitation mixing process, the optimal standing time and dosage of the bio-cement slurry prepared by the bio-mineralization method were 6 h and 30%, respectively. The average interface bonding force between CJ2 and glass slide was 2.12 N.


Asunto(s)
Bacterias/enzimología , Cementación , Ureasa , Carbonatos , Arena , Urea
18.
ACS Appl Mater Interfaces ; 13(49): 59243-59251, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34870967

RESUMEN

Electronically conductive hydrogels integrated with dielectric elastomers show great promise in a wide range of applications, such as biomedical devices, soft robotics, and stretchable electronics. However, one big conundrum that impedes the functionality and performance of hydrogel-elastomer-based devices lies in the strict demands of device integration and the requirements for devices with satisfactory mechanical and electrical properties. Herein, the digital light processing three-dimensional (3D) printing method is used to fabricate 3D functional devices that bridge submillimeter-scale device resolution to centimeter-scale object size and simultaneously realize complex hybrid structures with strong adhesion interfaces and desired functionalities. The interconnected poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) network endows the PAAm hydrogel with high conductivity and superior electrical stability and poly(2-hydroxyethyl acrylate) functions as an insulating medium. The strong interfacial bonding between the hydrogel and elastomer is achieved by incomplete photopolymerization that ensures the stability of the hybrid structure. Lastly, applications of stretchable electronics illustrated as 3D-printed electroluminescent devices and 3D-printed capacitive sensors are conceptually demonstrated. This strategy will open up avenues to fabricate conductive hydrogel-elastomer hybrids in next-generation multifunctional stretchable electronics.

19.
Materials (Basel) ; 14(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34442939

RESUMEN

In this paper, a corrugated Mg/Al clad plate was successfully manufactured by an upper corrugated roller and a lower flat roller at 400 °C rolling temperature and 35% reduction ratio. Interface bonding performance of the corrugated Mg/Al clad plate was studied by tensile-shear test. The finite element method was used to simulate the corrugated rolling process. Experiment results revealed that the Mg/Al clad plate fabricated by corrugated roller had a tight bonding interface, no crack, and no intermetallic compounds. The transverse tensile-shear strength at the trough position reached 31.22 MPa, and the tensile-shear strength at the peak position was 17.61 MPa. It can be found that the stress and strain of interface metal at the trough position were the largest through numerical simulation results. Two cross-shear zones can be formed in the rolling deformation zone of the corrugated Mg/Al clad plate, which can accelerate the metal plastic flow and promote interface close bonding.

20.
Nanotechnology ; 32(43)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34271561

RESUMEN

Strong interfacial bonding is the basic requirement for metal-graphene composites for higher thermo-mechanical properties. In the present work, a novel metal tantalum is introduced in the metal-graphene composites prepared by (ball-milling + molecular level mixing) followed by hot press sintering. SEM, transmission electron microscopy and high transmission electron microscopy are observed to check the interface area which shows the presence of tantalum carbide on the interface area which is formed during the sintering process. The formation of the carbide element significantly enhances the mechanical properties of composites. The addition of a very low amount of 0.1 vol% of rGO give the very high yield strength 200 MPa and ultimate tensile strength value 375 MPa with the good agreement of ductility, Vickers hardness 95 HV and bending strength 617 MPa which are much higher than unreinforced copper-tantalum composites and even from pure copper. The anisotropic thermal conductivity values are also significantly improving due to the better interfacial bonding and the ratio was 5 which is just 1.01 for pure copper. The formation of carbide elements and extraordinary high mechanical values with good ductility and anisotropic thermal conductivity ratio can lead to these materials used in thermal packaging systems and the electronic industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA