Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trop Med Infect Dis ; 8(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37888587

RESUMEN

Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.

2.
Front Microbiol ; 14: 1287519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235434

RESUMEN

Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.

3.
Insects ; 13(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35621811

RESUMEN

Culex Flavivirus (CxFV) is a classical insect-specific virus, which has aroused interest after the first indication that it can produce in nature superinfection exclusion of viruses of medical interest such as West Nile. Despite the detection of CxFV in different regions, CxFV ecology and the influence of co-circulation of arboviruses remains poorly understood. Therefore, our primary goals are to observe the occurrence of CxFV infection in mosquitoes trapped in an urban area of Rio de Janeiro, Brazil, characterize the virus circulating, and provide isolates. A prospective study was carried out for eight months on the campus of the Federal University of Rio de Janeiro, trapping adult mosquitoes. The CxFV minimum infection rates were determined in this period, and the virus isolation process is fully described. Samples from this study were grouped into genotype 2, along with CxFV sequences from Latin America and Africa.

4.
Viruses ; 11(9)2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500304

RESUMEN

The Peribunyaviridae family contains the genera Orthobunyavirus, Herbevirus, Pacuvirus, and Shangavirus. Orthobunyaviruses and pacuviruses are mainly transmitted by blood-feeding insects and infect a variety of vertebrates whereas herbeviruses and shangaviruses have a host range restricted to insects. Here, we tested mosquitoes from a tropical rainforest in Mexico for infections with peribunyaviruses. We identified and characterized two previously unknown viruses, designated Baakal virus (BKAV) and Lakamha virus (LAKV). Sequencing and de novo assembly of the entire BKAV and LAKV genomes revealed that BKAV is an orthobunyavirus and LAKV is likely to belong to a new genus. LAKV was almost equidistant to the established peribunyavirus genera and branched as a deep rooting solitary lineage basal to herbeviruses. Virus isolation attempts of LAKV failed. BKAV is most closely related to the bird-associated orthobunyaviruses Koongol virus and Gamboa virus. BKAV was successfully isolated in mosquito cells but did not replicate in common mammalian cells from various species and organs. Also cells derived from chicken were not susceptible. Interestingly, BKAV can infect cells derived from a duck species that is endemic in the region where the BKAV-positive mosquito was collected. These results suggest a narrow host specificity and maintenance in a mosquito-bird transmission cycle.


Asunto(s)
Infecciones por Bunyaviridae/transmisión , Culicidae/virología , Mosquitos Vectores/virología , Orthobunyavirus/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Infecciones por Bunyaviridae/virología , Culicidae/fisiología , Femenino , Genoma Viral , Humanos , México , Mosquitos Vectores/fisiología , Orthobunyavirus/clasificación , Orthobunyavirus/aislamiento & purificación , Filogenia , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA