Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Int Immunopharmacol ; 140: 112768, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39088918

RESUMEN

DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.


Asunto(s)
Daño del ADN , Inmunidad Innata , Humanos , Animales , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Neoplasias/inmunología , Enfermedades Autoinmunes/inmunología , Proteínas de la Membrana
2.
Hum Gene Ther ; 35(17-18): 586-603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39193633

RESUMEN

All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas , Inmunidad Humoral , Inmunoterapia , Dependovirus/genética , Dependovirus/inmunología , Humanos , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/inmunología , Terapia Genética/métodos , Inmunoterapia/métodos , Animales , Inmunidad Celular , Trasplante de Células Madre Hematopoyéticas , Edición Génica/métodos , Transgenes
3.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063137

RESUMEN

Ehrlichia chaffeensis infects and proliferates inside monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. After internalization, E. chaffeensis resides in specialized membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), to evade from host cell innate immune responses and obtain nutrients. However, mechanisms exploited by host cells to inhibit E. chaffeensis growth in ECVs are still largely unknown. Here we demonstrate that host cells recognize E. chaffeensis Ech_1067, a penicillin-binding protein, and then upregulate the expression of PIT1, which is a phosphate transporter and transports phosphate from ECVs to the cytosol to inhibit bacterial growth. We found that host cells upregulate the PIT1 expression upon E. chaffeensis infection using transcriptome sequencing, qRT-PCR and Western blotting, and PIT1 is localized on the ECV membrane in infected THP-1 cells using confocal microscopy. Silence of PIT1 using shRNA enhances E. chaffeensis intracellular growth. Finally, we found that E. chaffeensis Ech_1067 induces the upregulation of PIT1 expression through the MyD88-NF-κB pathway using recombinant protein for stimulation and siRNA for silence. Our findings deepen the understanding of the innate immune responses of host cells to inhibit bacterial intracellular growth and facilitate the development of new therapeutics for HME.


Asunto(s)
Ehrlichia chaffeensis , Humanos , Ehrlichia chaffeensis/metabolismo , Ehrlichia chaffeensis/genética , Células THP-1 , Regulación hacia Arriba , Ehrlichiosis/microbiología , Ehrlichiosis/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Fosfatos/metabolismo , FN-kappa B/metabolismo , Monocitos/metabolismo , Monocitos/microbiología
4.
J Virol ; 98(7): e0011024, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38837381

RESUMEN

We determined the transcription profile of adeno-associated virus type 2 (AAV2)-infected primary human fibroblasts. Subsequent analysis revealed that cells respond to AAV infection through changes in several significantly affected pathways, including cell cycle regulation, chromatin modulation, and innate immune responses. Various assays were performed to validate selected differentially expressed genes and to confirm not only the quality but also the robustness of the raw data. One of the genes upregulated in AAV2-infected cells was interferon-γ inducible factor 16 (IFI16). IFI16 is known as a multifunctional cytosolic and nuclear innate immune sensor for double-stranded as well as single-stranded DNA, exerting its effects through various mechanisms, such as interferon response, epigenetic modifications, or transcriptional regulation. IFI16 thereby constitutes a restriction factor for many different viruses among them, as shown here, AAV2 and thereof derived vectors. Indeed, the post-transcriptional silencing of IFI16 significantly increased AAV2 transduction efficiency, independent of the structure of the virus/vector genome. We also show that IFI16 exerts its inhibitory effect on AAV2 transduction in an immune-modulatory independent way by interfering with Sp1-dependent transactivation of wild-type AAV2 and AAV2 vector promoters. IMPORTANCE: Adeno-associated virus (AAV) vectors are among the most frequently used viral vectors for gene therapy. The lack of pathogenicity of the parental virus, the long-term persistence as episomes in non-proliferating cells, and the availability of a variety of AAV serotypes differing in their cellular tropism are advantageous features of this biological nanoparticle. To deepen our understanding of virus-host interactions, especially in terms of antiviral responses, we present here the first transcriptome analysis of AAV serotype 2 (AAV2)-infected human primary fibroblasts. Our findings indicate that interferon-γ inducible factor 16 acts as an antiviral factor in AAV2 infection and AAV2 vector-mediated cell transduction in an immune-modulatory independent way by interrupting the Sp1-dependent gene expression from viral or vector genomes.


Asunto(s)
Dependovirus , Fibroblastos , Proteínas Nucleares , Fosfoproteínas , Transducción Genética , Humanos , Dependovirus/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fibroblastos/virología , Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Inmunidad Innata , Vectores Genéticos/genética , Parvovirinae/genética , Células Cultivadas
5.
Hum Cell ; 37(4): 1080-1090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38814518

RESUMEN

Airway epithelium represents a physical barrier against toxic substances and pathogens but also presents pattern recognition receptors on the epithelial cells that detect pathogens leading to molecule release and sending signals that activate both the innate and adaptive immune responses. Thus, impaired airway epithelial function and poor integrity may increase the recurrence of infections. Probiotic use in respiratory diseases as adjuvant of traditional therapy is increasingly widespread. There is growing interest in the use of non-viable heat-killed bacteria, such as tyndallized bacteria (TB), due to safety concerns and to their immunomodulatory properties. This study explores in vitro the effects of a TB blend on the immune activation of airway epithelium. 16HBE bronchial epithelial cells were exposed to different concentrations of TB. Cell viability, TB internalization, TLR2 expression, IL-6, IL-8 and TGF-ßl expression/release, E-cadherin expression and wound healing were assessed. We found that TB were tolerated, internalized, increased TLR2, E-cadherin expression, IL-6 release and wound healing but decreased both IL-8 and TGF-ßl release. In conclusion, TB activate TLR2 pathway without inducing a relevant pro-inflammatory response and improve barrier function, leading to the concept that TB preserve epithelial homeostasis and could be used as strategy to prevent and to manage respiratory infection, exacerbations included.


Asunto(s)
Bronquios , Células Epiteliales , Inmunidad Innata , Receptor Toll-Like 2 , Humanos , Receptor Toll-Like 2/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Bronquios/citología , Bronquios/inmunología , Interleucina-6/metabolismo , Probióticos , Mucosa Respiratoria/inmunología , Cadherinas/metabolismo , Expresión Génica , Células Cultivadas , Interleucina-8/metabolismo , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Supervivencia Celular
6.
Parasite Immunol ; 46(2): e13022, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38384176

RESUMEN

Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Animales , Eimeria tenella/genética , Pollos/parasitología , Péptidos Catiónicos Antimicrobianos/genética , Receptores Toll-Like/genética , Coccidiosis/parasitología , Ciego/parasitología
7.
Heliyon ; 9(12): e22997, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125412

RESUMEN

While mRNA vaccine efficacy against the 2019 coronavirus disease (COVID-19) outbreak remains high, research on antiviral innate immune responses in the early stages of infection is essential to develop strategies to prevent the dissemination of SARS-CoV-2. In this study, we investigated the induction of both interferon (IFN)-stimulated genes (ISGs) and IFN-independently upregulated ISGs following SARS-CoV-2 infection in Syrian golden hamsters. The viral titers were highest at 3 days post-infection (dpi). Over time, the viral titer gradually decreased while ISGs such as Mx1, Ifit2, Ifit3, Ifi44, and Rsad2 were markedly induced in the lung. The transcription of ISGs significantly increased from 2 dpi, and SARS-CoV-2-induced ISGs were maintained in the hamster lung until 7 dpi. The transcription of Ifnb and Ifng was minimally elevated, while Ifnl2/3 was significantly induced in the lung at 5 days after SARS-CoV-2 infection. RNA sequencing results also showed that at 3 dpi, SARS-CoV-2 initiated the activation of ISGs, with lesser increases of Ifnl2 and Ifnl3 transcription. In addition, Ddx58 and cGAS, which encode factors for virus sensing, Stat1, Stat2, and IFN regulatory factor 7 and 9 mRNA levels were also induced at the initial stage of infection. Our data demonstrate that ISGs might be upregulated in the lung in response to SARS-CoV-2 during the early stages of infection, and the rapid induction of ISGs was not associated with the activation of IFNs. Elucidation of IFN-independent induction of ISGs could further our understanding of alternative defense mechanisms employed by the lungs against SARS-CoV-2 and provide more effective antiviral strategies for patients with severe COVID-19.

8.
Pathog Immun ; 8(1): 161-169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155941

RESUMEN

The inaugural FASEB HIV Reservoirs and Immune Control Conference brought researchers together from across the globe to discuss reservoir dynamics in clinical cohorts. It extended over 4 days in the seaside town of Malahide, Ireland. The scientific sessions covered a broad range of topics, including: 1) HIV pathogenesis and control, 2) reservoirs and viral expression, 3) pediatric reservoirs, 4) innate immunity and B cell responses, 5) environmental factors affecting pathogenesis, 6) loss of virologic control, and 7) HIV-2. The following article provides a brief summary of the meeting proceedings and includes a supplementary document with the meeting abstracts.

9.
EMBO Rep ; 24(12): e57528, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37955227

RESUMEN

Stimulator of interferon (IFN) genes (STING, also named MITA, ERIS, MPYS, or TMEM173) plays an essential role in DNA virus- or cytosolic DNA-triggered innate immune responses. Here, we demonstrate that the RING-in-between RING (RBR) E3 ubiquitin ligase family member RING-finger protein (RNF) 144A interacts with STING and promotes its K6-linked ubiquitination at K236, thereby enhancing STING translocation from the ER to the Golgi and downstream signaling pathways. The K236R mutant of STING displays reduced activity in promoting innate immune signal transduction. Overexpression of RNF144A upregulates HSV-1- or cytosolic DNA-induced immune responses, while knockdown of RNF144A expression has the opposite effect. In addition, Rnf144a-deficient cells exhibit impaired DNA virus- or cytosolic DNA-triggered signaling, and RNF144A protects mice from DNA virus infection. In contrast, RNF144A does not affect RNA virus- or cytosolic RNA-triggered innate immune responses. Taken together, our findings identify a new positive regulator of DNA virus- or cytosolic DNA-triggered signaling pathways and a critical ubiquitination site important for fully functional STING during antiviral responses.


Asunto(s)
Herpesvirus Humano 1 , Animales , Ratones , ADN , Herpesvirus Humano 1/genética , Inmunidad Innata , Ubiquitinación
10.
Fish Shellfish Immunol ; 142: 109177, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863127

RESUMEN

Aquatic animal health management has become a crucial component in the goal of increasing catfish aquaculture productivity. Additionally, hybrid catfish (Clarias gariepinus × C. macrocephalus) has been promoted as a highly profitable freshwater fish in Asia. Interestingly, the crucial diseases induced by Aeromonas hydrophila have been reported to greatly impede catfish production. To overcome this challenge, the aim was to investigate the effects of the oral administration of potentially synbiotic chitosan (CH) and Acinetobacter KU011TH (AK) on the growth performance, immunological responses, and disease resistance of hybrid catfish against A. hydrophila. The control group was fed a basal diet (A), the diet fed to treatment group B was supplemented with 20 mL of CH/kg diet (B), and the experimental feed fed to groups C-D was mixed with 1 × 108, 1 × 109 and 1 × 1010 CFU/mL AK coated with 20 mL of CH/kg diet. Five different groups of juvenile hybrid catfish were continuously fed the 5 formulated feeds for 4 weeks. The results revealed that all tested feeds did not significantly enhance the hybrid catfish's average daily gain, specific growth rate, feed conversion ratio, hematocrit and erythrocyte counts. Interestingly, the application of CH and AK significantly increased the leukocyte counts, respiratory burst, lysozyme activity, alternative complement pathway hemolytic activity, and bactericidal activity (P < 0.05). The expression levels of the immune-related genes in the whole blood, head kidney, and spleen were significantly increased after CH-AK application (P < 0.05), but this finding was not observed in the liver (P > 0.05). Additionally, after 14 days of A. hydrophila peritoneal injection, the fish in group C showed significantly higher survival rates of approximately 70.0 % compared with the control fish in groups B, D, and E (52.5 %, 40.0 %, 45.0 %, and 45.0 %, respectively) (P < 0.05). These results collectively suggest that short-term application of the diet fed to group C effectively boosted the immune responses and disease resistance of hybrid catfish against A. hydrophila.


Asunto(s)
Bagres , Quitosano , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Resistencia a la Enfermedad , Quitosano/farmacología , Suplementos Dietéticos , Dieta/veterinaria , Alimentación Animal/análisis , Aeromonas hydrophila/fisiología , Infecciones por Bacterias Gramnegativas/veterinaria
11.
Mol Ther Methods Clin Dev ; 30: 576-592, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37693943

RESUMEN

De novo immune responses are considered major challenges in gene therapy. With the aim to lower innate immune responses directly in cells targeted by adeno-associated virus (AAV) vectors, we equipped the vector capsid with a peptide known to interfere with Toll-like receptor signaling. Specifically, we genetically inserted in each of the 60 AAV2 capsid subunits the myeloid differentiation primary response 88 (MyD88)-derived peptide RDVLPGT, known to block MyD88 dimerization. Inserting the peptide neither interfered with capsid assembly nor with vector production yield. The novel capsid variant, AAV2.MB453, showed superior transduction efficiency compared to AAV2 in human monocyte-derived dendritic cells and in primary human hepatocyte cultures. In line with our hypothesis, AAV2.MB453 and AAV2 differed regarding innate immune response activation in primary human cells, particularly for type I interferons. Furthermore, mice treated with AAV2.MB453 showed significantly reduced CD8+ T cell responses against the transgene product for different administration routes and against the capsid following intramuscular administration. Moreover, humoral responses against the capsid were mitigated as indicated by delayed IgG2a antibody formation and an increased NAb50. To conclude, insertion of the MyD88-derived peptide into the AAV2 capsid improved early steps of host-vector interaction and reduced innate and adaptive immune responses.

12.
Biomedicines ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37626613

RESUMEN

Obesity alters the capacity of effective immune responses in infections. To further address this phenomenon in the context of COVID-19, this study investigated how the immunophenotype of leukocytes was altered in individuals with obesity in severe COVID-19. This cross-sectional study enrolled 27 ICU COVID-19 patients (67% women, 56.33 ± 19.55 years) that were assigned to obese (BMI ≥ 30 kg/m2, n = 9) or non-obese (BMI < 30kg/m2, n = 18) groups. Monocytes, NK, and both Low-Density (LD) and High-Density (HD) neutrophils were isolated from peripheral blood samples, and surface receptors' frequency and expression patterns were analyzed by flow cytometry. Clinical status and biochemical data were additionally evaluated. The frequency of monocytes was negatively correlated with BMI, while NK cells and HD neutrophils were positively associated (p < 0.05). Patients with obesity showed a significant reduction of monocytes, and these cells expressed high levels of PD-L1 (p < 0.05). A higher frequency of NK cells and increased expression of TREM-1+ on HD neutrophils were detected in obese patients (p < 0.05). The expression of receptors related to antigen-presentation, phagocytosis, chemotaxis, inflammation and suppression were strongly correlated with clinical markers only in obese patients (p < 0.05). Collectively, these outcomes revealed that obesity differentially affected, and largely depressed, innate immune response in severe COVID-19.

13.
Front Immunol ; 14: 1253094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533863

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2021.712556.].

14.
Front Allergy ; 4: 1223904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389281
15.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L206-L214, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37280545

RESUMEN

Bronchoconstriction is the main physiological event in asthma, which leads to worsened clinical symptoms and generates mechanical stress within the airways. Virus infection is the primary cause of exacerbations in people with asthma, however, the impact that bronchoconstriction itself on host antiviral responses and viral replication is currently not well understood. Here we demonstrate how mechanical forces generated during bronchoconstriction may suppress antiviral responses at the airway epithelium without any difference in viral replication. Primary bronchial epithelial cells from donors with asthma were differentiated at the air-liquid interface. Differentiated cells were apically compressed (30 cmH2O) for 10 min every hour for 4 days to mimic bronchoconstriction. Two asthma disease models were developed with the application of compression, either before ("poor asthma control model," n = 7) or following ("exacerbation model," n = 4) rhinovirus (RV) infection. Samples were collected at 0, 24, 48, 72, and 96 h postinfection (hpi). Viral RNA, interferon (IFN)-ß, IFN-λ, and host defense antiviral peptide gene expressions were measured along with IFN-ß, IFN-λ, TGF-ß2, interleukin-6 (IL-6), and IL-8 protein expression. Apical compression significantly suppressed RV-induced IFN-ß protein from 48 hpi and IFN-λ from 72 hpi in the poor asthma control model. There was a nonsignificant reduction of both IFN-ß and IFN-λ proteins from 48 hpi in the exacerbation model. Despite reductions in antiviral proteins, there was no significant change in viral replication in either model. Compressive stress mimicking bronchoconstriction inhibits antiviral innate immune responses from asthmatic airway epithelial cells when applied before RV infection.NEW & NOTEWORTHY Bronchoconstriction is the main physiological event in asthma, which leads to worsened clinical symptoms and generates mechanical stress within the airways. Virus infection is the primary cause of exacerbations in people with asthma, however, the impact of bronchoconstriction on host antiviral responses and viral replication is unknown. We developed two disease models, in vitro, and found suppressed IFN response from cells following the application of compression and RV-A1 infection. This explains why people with asthma have deficient IFN response.


Asunto(s)
Asma , Infecciones por Picornaviridae , Humanos , Rhinovirus , Inmunidad Innata , Asma/metabolismo , Antivirales/farmacología , Células Epiteliales/metabolismo
16.
Front Immunol ; 14: 1188757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180172

RESUMEN

Rotavirus A (RVA) causes ~200,000 diarrheal deaths annually in children <5yrs, mostly in low- and middle-income countries. Risk factors include nutritional status, social factors, breastfeeding status, and immunodeficiency. We evaluated the effects of vitamin A (VA) deficiency/VA supplementation and RVA exposure (anamnestic) on innate and T cell immune responses in RVA seropositive pregnant and lactating sows and passive protection of their piglets post-RVA challenge. Sows were fed VA deficient (VAD) or sufficient (VAS) diets starting at gestation day (GD)30. A subset of VAD sows received VA supplementation from GD|76 (30,000IU/day, VAD+VA). Sows (6 groups) were inoculated with porcine RVA G5P[7] (OSU strain) or Minimal Essential Medium (mock) at GD~90: VAD+RVA; VAS+RVA; VAD+VA+RVA; VAD-mock; VAS-mock; and VAD+VA-mock. Blood, milk, and gut-associated tissues were collected from sows at several time points to examine innate [natural killer (NK), dendritic (DC) cells], T cell responses and changes in genes involved in the gut-mammary gland (MG)-immunological axis trafficking. Clinical signs of RVA were evaluated post inoculation of sows and post-challenge of piglets. We observed decreased frequencies of NK cells, total and MHCII+ plasmacytoid DCs, conventional DCs, CD103+ DCs and CD4+/CD8+ and T regulatory cells (Tregs) and NK cell activity in VAD+RVA sows. Polymeric Ig receptor and retinoic acid receptor alpha (RARα) genes were downregulated in mesenteric lymph nodes and ileum of VAD+RVA sows. Interestingly, RVA-specific IFN-γ producing CD4+/CD8+ T cells were increased in VAD-Mock sows, coinciding with increased IL-22 suggesting inflammation in these sows. VA supplementation to VAD+RVA sows restored frequencies of NK cells and pDCs, and NK activity, but not tissue cDCs and blood Tregs. In conclusion, similar to our recent observations of decreased B cell responses in VAD sows that led to decreased passive immune protection of their piglets, VAD impaired innate and T cell responses in sows, while VA supplementation to VAD sows restored some, but not all responses. Our data reiterate the importance of maintaining adequate VA levels and RVA immunization in pregnant and lactating mothers to achieve optimal immune responses, efficient function of the gut-MG-immune cell-axis and to improve passive protection of their piglets.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Deficiencia de Vitamina A , Embarazo , Porcinos , Animales , Femenino , Vitamina A/farmacología , Linfocitos T CD8-positivos/metabolismo , Lactancia , Suplementos Dietéticos , Inmunidad
17.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190061

RESUMEN

Our previous study revealed that prolonged human rhinovirus (HRV) infection rapidly induces antiviral interferons (IFNs) and chemokines during the acute stage of infection. It also showed that expression levels of RIG-I and interferon-stimulated genes (ISGs) were sustained in tandem with the persistent expression of HRV RNA and HRV proteins at the late stage of the 14-day infection period. Some studies have explored the protective effects of initial acute HRV infection on secondary influenza A virus (IAV) infection. However, the susceptibility of human nasal epithelial cells (hNECs) to re-infection by the same HRV serotype, and to secondary IAV infection following prolonged primary HRV infection, has not been studied in detail. Therefore, the aim of this study was to investigate the effects and underlying mechanisms of HRV persistence on the susceptibility of hNECs against HRV re-infection and secondary IAV infection. We analyzed the viral replication and innate immune responses of hNECs infected with the same HRV serotype A16 and IAV H3N2 at 14 days after initial HRV-A16 infection. Prolonged primary HRV infection significantly diminished the IAV load of secondary H3N2 infection, but not the HRV load of HRV-A16 re-infection. The reduced IAV load of secondary H3N2 infection may be explained by increased baseline expression levels of RIG-I and ISGs, specifically MX1 and IFITM1, which are induced by prolonged primary HRV infection. As is congruent with this finding, in those cells that received early and multi-dose pre-treatment with Rupintrivir (HRV 3C protease inhibitor) prior to secondary IAV infection, the reduction in IAV load was abolished compared to the group without pre-treatment with Rupintrivir. In conclusion, the antiviral state induced from prolonged primary HRV infection mediated by RIG-I and ISGs (including MX1 and IFITM1) can confer a protective innate immune defense mechanism against secondary influenza infection.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Interferones/farmacología , Interferones/genética , Subtipo H3N2 del Virus de la Influenza A , Rhinovirus , Antivirales , Carga Viral , Reinfección , Células Epiteliales/metabolismo , Virus de la Influenza A/genética
18.
Front Microbiol ; 14: 1176177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187533

RESUMEN

The recognition of viral nucleic acids by host pattern recognition receptors (PRRs) is critical for initiating innate immune responses against viral infections. These innate immune responses are mediated by the induction of interferons (IFNs), IFN-stimulated genes (ISGs) and pro-inflammatory cytokines. However, regulatory mechanisms are critical to avoid excessive or long-lasting innate immune responses that may cause detrimental hyperinflammation. Here, we identified a novel regulatory function of the ISG, IFN alpha inducible protein 27 (IFI27) in counteracting the innate immune responses triggered by cytoplasmic RNA recognition and binding. Our model systems included three unrelated viral infections caused by Influenza A virus (IAV), Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), and Sendai virus (SeV), and transfection with an analog of double-stranded (ds) RNA. Furthermore, we found that IFI27 has a positive effect on IAV and SARS-CoV-2 replication, most likely due to its ability to counteract host-induced antiviral responses, including in vivo. We also show that IFI27 interacts with nucleic acids and PRR retinoic acid-inducible gene I (RIG-I), being the interaction of IFI27 with RIG-I most likely mediated through RNA binding. Interestingly, our results indicate that interaction of IFI27 with RIG-I impairs RIG-I activation, providing a molecular mechanism for the effect of IFI27 on modulating innate immune responses. Our study identifies a molecular mechanism that may explain the effect of IFI27 in counterbalancing innate immune responses to RNA viral infections and preventing excessive innate immune responses. Therefore, this study will have important implications in drug design to control viral infections and viral-induced pathology.

19.
Adv Sci (Weinh) ; 10(17): e2207249, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37096860

RESUMEN

Highly pathogenic coronavirus (CoV) infection induces a defective innate antiviral immune response coupled with the dysregulated release of proinflammatory cytokines and finally results in acute respiratory distress syndrome (ARDS). A timely and appropriate triggering of innate antiviral response is crucial to inhibit viral replication and prevent ARDS. However, current medical countermeasures can rarely meet this urgent demand. Here, an antiviral nanobiologic named CoVR-MV is developed, which is polymerized of CoVs receptors based on a biomimetic membrane vesicle system. The designed CoVR-MV interferes with the viral infection by absorbing the viruses with maximized viral spike target interface, and mediates the clearance of the virus through its inherent interaction with macrophages. Furthermore, CoVR-MV coupled with the virus promotes a swift production and signaling of endogenous type I interferon via deregulating 7-dehydrocholesterol reductase (DHCR7) inhibition of interferon regulatory factor 3 (IRF3) activation in macrophages. These sequential processes re-modulate the innate immune responses to the virus, trigger spontaneous innate antiviral defenses, and rescue infected Syrian hamsters from ARDS caused by SARS-CoV-2 and all tested variants.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Inmunidad Innata , Antivirales/farmacología , Antivirales/uso terapéutico
20.
J Med Virol ; 95(3): e28637, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36892175

RESUMEN

Increasing evidence suggests that natural antisense transcriptional lncRNAs regulate their adjacent coding genes to mediate diverse aspects of biology. Bioinformatics analysis of the previously identified antiviral gene ZNFX1 revealed neighboring lncRNA ZFAS1 transcribed on the opposite strand from ZNFX1. Whether ZFAS1 exerts antiviral function via regulating the dsRNA sensor ZNFX1 is unknown. Here we found that ZFAS1 was upregulated by RNA and DNA viruses and type I IFNs (IFN-I) dependent on Jak-STAT signaling, similar to the transcription regulation of ZNFX1. Knockdown of endogenous ZFAS1 partially facilitated viral infection, while ZFAS1 overexpression showed opposite effects. In addition, mice were more resistant to VSV infection with the delivery of human ZFAS1. We further observed that ZFAS1 knockdown significantly inhibited IFNB1 expression and IFR3 dimerization, whereas ZFAS1 overexpression positively regulated antiviral innate immune pathways. Mechanistically, ZFAS1 positively regulated ZNFX1 expression and antiviral function by enhancing the protein stability of ZNFX1, thereby establishing a positive feedback loop to enhance antiviral immune activation status. In short, ZFAS1 is a positive regulator of antiviral innate immune response via regulating its neighbor gene ZNFX1, adding new mechanistic insight into lncRNA-mediated regulation of signaling in innate immunity.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Antivirales , MicroARNs/genética , Antígenos de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA