Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(5): 231374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100625

RESUMEN

A prevalent class of challenges in modern physics are inverse problems, where physical quantities must be extracted from experimental measurements. End-to-end machine learning approaches to inverse problems typically require constructing sophisticated estimators to achieve the desired accuracy, largely because they need to learn the complex underlying physical model. Here, we discuss an alternative paradigm: by making the physical model auto-differentiable we can construct a neural surrogate to represent the unknown physical quantity sought, while avoiding having to relearn the known physics entirely. We dub this process surrogate training embedded in physics (STEP) and illustrate that it generalizes well and is robust against overfitting and significant noise in the data. We demonstrate how STEP can be applied to perform dynamic kernel deconvolution to analyse resonant inelastic X-ray scattering spectra and show that surprisingly simple estimator architectures suffice to extract the relevant physical information.

2.
J Phys Condens Matter ; 36(42)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38976987

RESUMEN

The study of phonon dynamics and its interplay with magnetic ordering is crucial for understanding the unique quantum phases in the pyrochlore iridates. Here, through inelastic x-ray scattering on a single crystal sample of the pyrochlore iridate Eu2Ir2O7, we map out the phonon excitation spectra in Eu2Ir2O7and compare them with the theoretical phonon spectra calculated using the density functional theory. Possible phonon renormalization across the magnetic long-range order transition is observed in our experiments, which is consistent with the results of the previous Raman scattering experiments.

3.
J Synchrotron Radiat ; 31(Pt 5): 1264-1275, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078692

RESUMEN

A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump-probe measurements and in investigations of propagation effects and other nonlinear phenomena.

4.
IUCrJ ; 11(Pt 4): 620-633, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904549

RESUMEN

Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner.

5.
J Synchrotron Radiat ; 31(Pt 3): 464-468, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619290

RESUMEN

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.

6.
J Synchrotron Radiat ; 31(Pt 2): 208-216, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300129

RESUMEN

The X-ray emission spectrometer at SPring-8 BL07LSU has recently been upgraded with advanced modifications that enable the rotation of the spectrometer with respect to the scattering angle. This major upgrade allows the scattering angle to be flexibly changed within the range of 45-135°, which considerably simplifies the measurement of angle-resolved X-ray emission spectroscopy. To accomplish the rotation system, a sophisticated sample chamber and a highly precise spectrometer rotation mechanism have been developed. The sample chamber has a specially designed combination of three rotary stages that can smoothly move the connection flange along the wide scattering angle without breaking the vacuum. In addition, the spectrometer is rotated by sliding on a flat metal surface, ensuring exceptionally high accuracy in rotation and eliminating the need for any further adjustments during rotation. A control system that integrates the sample chamber and rotation mechanism to automate the measurement of angle-resolved X-ray emission spectroscopy has also been developed. This automation substantially streamlines the process of measuring angle-resolved spectra, making it far easier than ever before. Furthermore, the upgraded X-ray emission spectrometer can now also be utilized in diffraction experiments, providing even greater versatility to our research capabilities.

7.
Adv Mater ; 36(18): e2309842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269958

RESUMEN

Cation doping is an effective strategy for improving the cyclability of layered oxide cathode materials through suppression of phase transitions in the high voltage region. In this study, Mg and Sc are chosen as dopants in P2-Na0.67Ni0.33Mn0.67O2, and both have found to positively impact the cycling stability, but influence the high voltage regime in different ways. Through a combination of synchrotron-based methods and theoretical calculations it is shown that it is more than just suppression of the P2 to O2 phase transition that is critical for promoting the favorable properties, and that the interplay between Ni and O activity is also a critical aspect that dictates the performance. With Mg doping, the Ni activity can be enhanced while simultaneously suppressing the O activity. This is surprising because it is in contrast to what has been reported in other Mn-based layered oxides where Mg is known to trigger oxygen redox. This contradiction is addressed by proposing a competing mechanism between Ni and Mg that impacts differences in O activity in Na0.67MgxNi0.33- xMn0.67O2 (x < 0 < 0.33). These findings provide a new direction in understanding the effects of cation doping on the electrochemical behavior of layered oxides.

8.
Adv Mater ; 36(3): e2307515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37830432

RESUMEN

The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.

9.
J Phys Condens Matter ; 36(7)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37879348

RESUMEN

Inelastic x-ray scattering (IXS) measurements were performed for observing the excitation of bulk plasmons in metallic liquid silicon (Si). The peak due to plasmon excitation was observed within the energy loss around 17 eV. Combined with IXS data of crystalline Si measured at several elevated temperatures, it was found that temperature dependence of the excitation energy in the crystalline solid state is explained by the electron gas including the band gap effect, whereas in the metallic liquid state near the melting point, it exhibits a departure from the electron gas; the plasmon energy takes a lower value than that of the electron gas. Such lowering of plasmon energies is reasonably explained by a model incorporating semiconducting component to the electron gas. Non-simple metallic nature in liquid silicon is highlighted by the observation of electron collective dynamics.

10.
J Synchrotron Radiat ; 30(Pt 4): 822-830, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37159289

RESUMEN

A von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution. The setup was commissioned by measuring various emission spectra of free-standing metal foils and oxide samples in the energy range between 6 and 11 keV as well as low momentum-transfer inelastic X-ray scattering from a diamond sample. Its capabilities to study samples at extreme pressures and temperatures have been demonstrated by measuring the electronic spin-state changes of (Fe0.5Mg0.5)O, contained in a diamond anvil cell and pressurized to 100 GPa, via monitoring the Fe Kß fluorescence with a set of four Si(531) analyser crystals at close to melting temperatures. The efficiency and signal-to-noise ratio of the spectrometer enables valence-to-core emission signals to be studied and single pulse X-ray emission from samples in a diamond anvil cell to be measured, opening new perspectives for spectroscopy in extreme conditions research.


Asunto(s)
Diamante , Electrones , Diamante/química , Radiografía , Rayos X , Rayos Láser
11.
J Synchrotron Radiat ; 30(Pt 3): 643-649, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947164

RESUMEN

An endstation for resonant inelastic X-ray scattering (RIXS), dedicated to operations in the hard X-ray regime, has been constructed at the 1C beamline of Pohang Light Source II. At the Ir L3-edge, a total energy resolution of 34.2 meV was achieved, close to the theoretical estimation of 34.0 meV, which considers factors such as the incident energy bandpass, intrinsic analyzer resolution, geometrical broadening of the spectrometer, finite beam-size effect and Johann aberration. The performance of the RIXS instrument is demonstrated by measuring the RIXS spectra of Sr2IrO4. The endstation can be easily reconfigured to measure energy-integrated intensities with very low background for diffuse scattering and diffraction experiments.

12.
Nanomaterials (Basel) ; 13(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903796

RESUMEN

As a contribution to the ongoing effort toward high-frequency sound manipulation in composite materials, we use Inelastic X-ray Scattering to probe the phonon spectrum of ice, either in a pure form or with a sparse amount of nanoparticles embedded in it. The study aims at elucidating the ability of nanocolloids to condition the collective atomic vibrations of the surrounding environment. We observe that a nanoparticle concentration of about 1 % in volume is sufficient to visibly affect the phonon spectrum of the icy substrate, mainly canceling its optical modes and adding nanoparticle phonon excitations to it. We highlight this phenomenon thanks to the lineshape modeling based on a Bayesian inference, which enables us to capture the finest detail of the scattering signal. The results of this study can empower new routes toward the shaping of sound propagation in materials through the control of their structural heterogeneity.

13.
J Phys Condens Matter ; 35(23)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36893472

RESUMEN

Inelastic x-ray scattering measurements have been carried out to investigate atomic dynamics in a melt of fast phase change material GeCu2Te3. The dynamic structure factor was analysed using the model function with three damped harmonic oscillator components. By investigating the correlation between the excitation energy and the linewidth, and that between the excitation energy and the intensity on contour maps of a relative approximate probability distribution function proportional toexp(-χ2/N), we could judge the reliability of each inelastic excitation in the dynamic structure factor. The results indicate that there are two inelastic excitation modes besides the longitudinal acoustic one in the liquid. The lower energy excitation could be assigned to the transverse acoustic one whereas the higher energy one disperses like fast sound. The latter result may imply that the liquid ternary alloy exhibits a microscopic phase separation tendency.

14.
J Phys Condens Matter ; 35(17)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36735967

RESUMEN

Resonant inelastic x-ray scattering (RIXS) using an incident energy tuned to the uraniumN4,5absorption edges is reported from epitaxial films ofα-U3O8and UN. Theory shows that for U3O8the multiplets associated with a 5f1configuration with a ground state of2F5/2and the excited state of2F7/2are observed. However, the strong transition predicted at a transfer energy of 1.67 eV is not observed. We assume this is a consequence of the intermediate state lifetime broadening due to interaction with continuum states when the transferred energy exceeds the onset of the continuum in the presence of the core hole. This hypothesis is supported by the results obtained for the 5f-itinerant system UN, where no sharp transitions have been observed, although the broad scattering response centred at ∼1 eV is considered a signature of a predominantly 5f3configuration in this band-like semi-metallic system. These experiments and theory add important information on these materials, both of which have been investigated since the 1960s, as well as whether RIXS at the uraniumNedge can become a valuable tool for actinide research.

15.
J Phys Condens Matter ; 35(11)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36603227

RESUMEN

The dynamic structure factorS(Q,E), whereQandEare momentum and energy transfer, respectively, has been measured for liquid Eu8Ga16Ge30(EGG), using inelastic x-ray scattering. The excitation energy of the longitudinal acoustic mode in the liquid was scaled to that in liquid Ba8Ga16Sn30(BGS) with the effective mass. This result means that the local structure in both liquids are similar. The longitudinal acoustic excitation energy of type-I clathrate compound EGG disperses faster than that in the liquid, suggesting that the interatomic force is weakened on melting. The lower energy excitation was observed in both liquid EGG and liquid BGS. In comparison with the longitudinal phonon dispersion in crystalline clathrate compound EGG obtained by density functional theory-based calculations, the lower energy in the liquid was found to be near the optical mode energy. The result indicates that the lower energy mode arises from the relative motion between Eu and (Ga, Ge) atoms.

16.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889625

RESUMEN

One of the grand challenges of new generation Condensed Matter physicists is the development of novel devices enabling the control of sound propagation at terahertz frequency. Indeed, phonon excitations in this frequency window are the leading conveyor of heat transfer in insulators. Their manipulation is thus critical to implementing heat management based on the structural design. To explore the possibility of controlling the damping of sound waves, we used high spectral contrast Inelastic X-ray Scattering (IXS) to comparatively study terahertz acoustic damping in a dilute suspension of 50 nm nanospheres in glycerol and on pure glycerol. Bayesian inference-based modeling of measured spectra indicates that, at sufficiently large distances, the spectral contribution of collective modes in the glycerol suspension becomes barely detectable due to the enhanced damping, the weakening, and the slight softening of the dominant acoustic mode.

17.
J Synchrotron Radiat ; 29(Pt 4): 931-938, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787558

RESUMEN

High-resolution inelastic X-ray scattering is an established technique in the synchrotron community, used to investigate collective low-frequency responses of materials. When fielded at hard X-ray free-electron lasers (XFELs) and combined with high-intensity laser drivers, it becomes a promising technique for investigating matter at high temperatures and high pressures. This technique gives access to important thermodynamic properties of matter at extreme conditions, such as temperature, material sound speed, and viscosity. The successful realization of this method requires the acquisition of many identical laser-pump/X-ray-probe shots, allowing the collection of a sufficient number of photons necessary to perform quantitative analyses. Here, a 2.5-fold improvement in the energy resolution of the instrument relative to previous works at the Matter in Extreme Conditions (MEC) endstation, Linac Coherent Light Source (LCLS), and the High Energy Density (HED) instrument, European XFEL, is presented. Some aspects of the experimental design that are essential for improving the number of photons detected in each X-ray shot, making such measurements feasible, are discussed. A careful choice of the energy resolution, the X-ray beam mode provided by the XFEL, and the position of the analysers used in such experiments can provide a more than ten-fold improvement in the photometrics. The discussion is supported by experimental data on 10 µm-thick iron and 50 nm-thick gold samples collected at the MEC endstation at the LCLS, and by complementary ray-tracing simulations coupled with thermal diffuse scattering calculations.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 1): 356-358, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35695108

RESUMEN

Using X-ray scattering, we measured detailed maps of the diffuse scattering intensity distribution and a number of phonon dispersion branches for a single crystal of inorganically formed natural calcite and for high-quality mesocrystals of biogenic calcite from a Mediterranean sea urchin spine. A comparison shows that the known differences in the mechanical properties between the `strong' biogenic and `brittle' abiotic material should be attributed to the mesoscopic architecture of the crystal rather than to a modification of the calcite crystal structure. The data are rationalized by comparing them to the results of ab initio model calculations of lattice dynamics. For the mesocrystal, they are augmented by the evaluation of the faceting of the constituent nanocrystals.


Asunto(s)
Carbonato de Calcio , Nanopartículas , Animales , Carbonato de Calcio/química , Nanopartículas/química , Erizos de Mar/química
19.
J Phys Condens Matter ; 34(36)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35728792

RESUMEN

Longitudinal-optical (LO) mode phonon branches of KCl and NaCl were measured using inelastic x-ray scattering (IXS) at 300 K and calculated by the first-principles phonon calculation with the stochastic self-consistent harmonic approximation. Spectral shapes of the IXS measurements and calculated spectral functions agreed well. We analyzed the calculated spectral functions that provide higher resolutions of the spectra than the IXS measurements. Due to strong anharmonicity, the spectral functions of these phonon branches have several peaks and the LO modes along Γ-L paths are disconnected.

20.
J Synchrotron Radiat ; 29(Pt 3): 749-754, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511007

RESUMEN

Modern inelastic X-ray spectrometers employ curved, bent and diced analyzers to capture sufficiently large solid angles of radially emitted scattered radiation emanating from the sample. Fabricating these intricate analyzers, especially when a high energy resolution of a few millielectronvolts is required, is very time-consuming, expensive and often a hit-or-miss affair. A novel fabrication technique is introduced, utilizing a concave-spherical, microporous aluminium base to hold an assembly of a thin glass substrate with a diced crystal wafer bonded to it. Under uniform vacuum forces, the glass substrate is drawn into the aluminium base, achieving the desired bending radius, while dicing of the diffracting crystal layer prevents bending strain from being imposed on the individual crystal pixels. This technique eliminates the need for permanently bonding the crystal assembly to the concave lens, offering the opportunity for correcting figure errors, avoiding long-term degradation of the permanent bond, and making both lens and crystal reusable. Process and material costs are thus substantially decreased. Two analyzers, Si(844) and Ge(337) with intrinsic resolutions of 14.6 meV and 36.5 meV, respectively, were produced in this fashion and characterized in resonant inelastic X-ray scattering (RIXS) measurements. The achieved overall energy resolutions for both analyzers were 29.4 meV for Si(844) and 56.6 meV for Ge(337). Although the RIXS technique is veru sensitive to analyzer imperfections, the analyzers were found to be equal, if not superior, in quality to their traditional, permanently bonded counterparts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA