Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diseases ; 12(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38920546

RESUMEN

BACKGROUND: The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. METHODS: A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. RESULTS: During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. CONCLUSIONS: Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.

2.
J Biophotonics ; 14(1): e202000267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857463

RESUMEN

A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.


Asunto(s)
Sustitutos de Huesos , Terapia por Luz de Baja Intensidad , Animales , Regeneración Ósea
3.
Pharmaceutics ; 12(2)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991767

RESUMEN

The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, -14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable "value-added" product for the treatment of neuroinflammation.

4.
Int J Biol Macromol ; 144: 85-93, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838064

RESUMEN

Use of biomaterial scaffolds as drug carriers for infected wounds treatment is of wide scope. A series of curcumin/TiO2 complex loaded chitosan scaffolds are fabricated for the same. Synthesized wound dressing material is screened for their morphology, water absorption capacity; in vitro drug release patterns, in vitro antibacterial studies against gram +ve and a gram -ve bacteria, cell viability for 3T3-L1 cell lines as well as in vivo MRSA infected wound healing capability. Formation of curcumin/TiO2 complex was confirmed by X-ray diffraction studies, the anchoring pattern of them on the chitosan scaffold was analyzed by FESEM and EDS mapping. All membranes showed a better performance towards in vitro antibacterial and in vivo wound healing properties than the control ones in 14 days. The bacterial count on wound for a regular time period was measured and the scaffold with higher amount of curcumin in its complex is found to give the better performance, along with skin regeneration due to synergistic effect of curcumin and TiO2.


Asunto(s)
Quitosano/química , Curcumina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Piel/microbiología , Textiles , Andamios del Tejido/química , Titanio/farmacología , Cicatrización de Heridas/efectos de los fármacos , Células 3T3-L1 , Animales , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Curcumina/química , Liberación de Fármacos , Masculino , Membranas Artificiales , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Ratones , Pruebas de Sensibilidad Microbiana , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Titanio/química , Agua , Difracción de Rayos X
5.
Nutrients ; 11(10)2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614852

RESUMEN

Over the last decade, proanthocyanidins (PACs) are attracting attention not only from the food industry but also from public health organizations due to their health benefits. It is well-known that grapes are a good source of PACs and for that reason, the industry is also focused on grape by-products identification and bioactivity evaluation. Grape seeds extract (GSPE) is a rich source of PACs, mainly composed of monomeric catechin and epicatechin, gallic acid and polymeric and oligomeric proanthocyanidins. Thus, this review encompasses the state-of-art structure and the most recent evidence about the impact of GSPE on chronic diseases, with a focus on oxidative stress, inflammation and metabolic syndrome (MeS)-related disorders such as obesity, diabetes and cardiovascular risk disease in vivo to offer new perspectives in the field that allow further research. Despite the controversial results, is undeniable that PACs from grape seeds are highly antioxidants, thus, the capacity of GSPE to improve oxidative stress might mediate the inflammation process and the progress of MeS-related pathologies. However, further well-design animal studies with standardized dosages and GSPE composition are necessary to shed light into the cause-effect relationship in a more accurate way to later allow a deeper study of the effect of GSPE in humans.


Asunto(s)
Inflamación/tratamiento farmacológico , Síndrome Metabólico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Proantocianidinas/farmacología , Semillas/química , Vitis/química , Animales , Proantocianidinas/química
6.
Clin Oral Investig ; 20(5): 1115-20, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26955833

RESUMEN

OBJECTIVES: Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. MATERIALS AND METHODS: Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. RESULTS: Acid-etched mini-implants (R a ≈ 1.7 µm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 µm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 µm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. CONCLUSIONS: Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. CLINICAL RELEVANCE: This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.


Asunto(s)
Implantes Dentales , Fémur/cirugía , Métodos de Anclaje en Ortodoncia/instrumentación , Grabado Ácido Dental , Animales , Fenómenos Biomecánicos , Placas Óseas , Interfase Hueso-Implante , Pulido Dental , Remoción de Dispositivos , Implantes Experimentales , Ensayo de Materiales , Conejos , Propiedades de Superficie , Titanio , Torque , Humectabilidad
7.
Drug Dev Ind Pharm ; 41(8): 1311-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25119000

RESUMEN

Pregabalin is an anticonvulsant drug used for neuropathic pain and as an adjunct therapy for partial seizures with or without secondary generalization in adults. In conventional therapy recommended dose for pregabalin is 75 mg twice daily or 50 mg three times a day, with maximum dosage of 600 mg/d. To achieve maximum therapeutic effect with a low risk of adverse effects and to reduce often drug dosing, modified release preparations; such as microspheres might be helpful. However, most of the microencapsulation techniques have been used for lipophilic drugs, since hydrophilic drugs like pregabalin, showed low-loading efficiency and rapid dissolution of compounds into the aqueous continous phase. The purpose of this study was to improve loading efficiency of a water-soluble drug and modulate release profiles, and to test the efficiency of the prepared microspheres with the help of animal modeling studies. Pregabalin is a water soluble drug, and it was encapsulated within anionic acrylic resin (Eudragit S 100) microspheres by water in oil in oil (w/o/o) double emulsion solvent diffusion method. Dichloromethane and corn oil were chosen primary and secondary oil phases, respectively. The presence of internal water phase was necessary to form stable emulsion droplets and it accelerated the hardening of microspheres. Tween 80 and Span 80 were used as surfactants to stabilize the water and corn oil phases, respectively. The optimum concentration of Tween 80 was 0.25% (v/v) and Span 80 was 0.02% (v/v). The volume of the continous phase was affected the size of the microspheres. As the volume of the continous phase increased, the size of microspheres decreased. All microsphere formulations were evaluated with the help of in vitro characterization parameters. Microsphere formulations (P1-P5) exhibited entrapment efficiency ranged between 57.00 ± 0.72 and 69.70 ± 0.49%; yield ranged between 80.95 ± 1.21 and 93.05 ± 1.42%; and mean particle size were between 136.09 ± 2.57 and 279.09 ± 1.97 µm. Pregabalin microspheres having better results among all formulations (Table 3) were chosen for further studies such as differential scanning calorimetry, Fourier transform infrared analysis and dissolution studies. In the last step, the best pregabalin microsphere formulation (P3) was chosen for in vivo animal studies. The pregabalin-loaded microspheres (P3) and conventional pregabalin capsules were applied orally in rats for three days, resulted in clinical improvement of cold allodynia, an indicator of peripheral neuropathy. This result when evaluated together with the serum pregabalin levels and in vitro release studies suggests that the pregabalin microspheres prepared with w/o/o double emulsion solvent diffusion method can be an alternative form for neuropathic pain therapy. Conclusively, a drug delivery system successfully developed that showed modified release up to 10 h and could be potentially useful to overcome the frequent dosing problems associated with pregabalin conventional dosage form.


Asunto(s)
Microesferas , Modelos Animales , Pregabalina/síntesis química , Solventes/síntesis química , Analgésicos/síntesis química , Analgésicos/farmacología , Animales , Química Farmacéutica , Emulsiones , Masculino , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Pregabalina/farmacología , Ratas , Ratas Sprague-Dawley , Solventes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA