Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 12(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454256

RESUMEN

Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.

2.
Plants (Basel) ; 11(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35161445

RESUMEN

American chestnut (Castanea dentata), a native species of eastern North America, is an economically important deciduous hardwood tree that has been designated as endangered in Canada. The population of American chestnut trees has dwindled significantly across Southern Ontario due to chestnut blight and many of the surviving trees continue to show blight disease symptoms. American chestnut requires efficient strategies for propagation and preservation for species recovery. The objective of this study was to develop a long-term plant conservation program using micropropagation and cryopreservation protocols. An in vitro technology using a liquid-based temporary immersion system (TIS) was developed for micropropagation of American chestnut. The highest rate of shoot multiplication was observed in cultures grown in the DKW (Driver and Kuniyuki 1984) basal medium supplemented with 2.2 µM 6-benzylaminopurine and 1.0 µM gibberellic acid. More than 95% of proliferated microshoots, about 40-50 mm in size, developed roots after 30 days of culture within bioreactor vessels containing DKW basal medium supplemented with 15 µM 3-Indolebutyric acid. Rooted plantlets transplanted to the greenhouse had a survival efficiency of 82% after one month of growth. The cryopreservation protocol for germplasm preservation was developed through droplet vitrification of shoots. Optimal regeneration of shoot tips occurred from explants precultured on stepwise concentrations of sucrose and subsequent dehydration in PVS3 for 30 min. Cryopreserved shoot tips were regenerated to whole plants using pre-optimized conditions of micropropagation. This study confirms the potential of TIS for micropropagation in ex situ conservation and reintroduction of endangered American chestnuts and possibly other woody plant species.

3.
Plants (Basel) ; 10(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34685902

RESUMEN

Yukon Draba (Draba yukonensis) is a small, short-lived perennial mustard species that is endemic to southwestern Yukon in Canada. This plant has been categorized as a species of Special Concern. It faces the threat of habitat loss due to natural and man-made causes and a population that is unevenly distributed to a few large and several small subpopulations in the area. It will therefore be judicious to undertake investigations on the conservation of this species to save it from further deterioration which may lead to its extinction. In this study, a protocol was developed for in vitro propagation and cryopreservation of Yukon Draba. The micropropagation protocol was optimized using shoot tips which enabled clonal propagation and in vitro storage of the species. Shoots grew best in the medium containing MS basal salts and had the highest multiplication with the addition of 2 µM 6-benzylaminopurine or 5 µM Kinetin with 3% sucrose. The addition of 10 µM Indole Butyric Acid (IBA) produced the highest number of adventitious roots on the shoots and the longest root length was observed at 2 µM IBA. The rooted plantlets were transferred to greenhouse and the highest survival (87.5%) was observed for the plantlets treated with a lower concentration of IBA (2 µM). Cryopreservation protocol was developed using the droplet-vitrification method for in vitro shoot tips. Two-week-old shoots had the highest survival and regrowth following exposure to plant vitrification solution 3 (PVS3) for 30 min, prior to direct immersion of the droplets into the liquid nitrogen. The optimized protocols for the micropropagation and cryopreservation may be useful for the long-term germplasm conservation and reintroduction of this species in its natural habitat.

4.
MAbs ; 9(5): 742-755, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28475417

RESUMEN

The market for biotherapeutic monoclonal antibodies (mAbs) is large and is growing rapidly. However, attrition poses a significant challenge for the development of mAbs, and for biopharmaceuticals in general, with large associated costs in resource and animal use. Termination of candidate mAbs may occur due to poor translation from preclinical models to human safety. It is critical that the industry addresses this problem to maintain productivity. Though attrition poses a significant challenge for pharmaceuticals in general, there are specific challenges related to the development of antibody-based products. Due to species specificity, non-human primates (NHP) are frequently the only pharmacologically relevant species for nonclinical safety and toxicology testing for the majority of antibody-based products, and therefore, as more mAbs are developed, increased NHP use is anticipated. The integration of new and emerging in vitro and in silico technologies, e.g., cell- and tissue-based approaches, systems pharmacology and modeling, have the potential to improve the human safety prediction and the therapeutic mAb development process, while reducing and refining animal use simultaneously. In 2014, to engage in open discussion about the challenges and opportunities for the future of mAb development, a workshop was held with over 60 regulators and experts in drug development, mechanistic toxicology and emerging technologies to discuss this issue. The workshop used industry case-studies to discuss the value of the in vivo studies and identify opportunities for in vitro technologies in human safety assessment. From these and continuing discussions it is clear that there are opportunities to improve safety assessment in mAb development using non-animal technologies, potentially reducing future attrition, and there is a shared desire to reduce animal use through minimised study design and reduced numbers of studies.


Asunto(s)
Anticuerpos Monoclonales , Simulación por Computador , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Congresos como Asunto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA