Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(17): 7906-7913, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37619971

RESUMEN

A recent study of liquid sulfur produced in an electrochemical cell has prompted further investigation into regulating Li-S oxidation chemistry. In this research, we examined the liquid-to-solid sulfur transition dynamics by visually observing the electrochemical generation of sulfur on a graphene-based substrate. We investigated the charging of polysulfides at various current densities and discovered a quantitative correlation between the size and number density of liquid sulfur droplets and the applied current. However, the areal capacities exhibited less sensitivity. This observation offers valuable insights for designing fast-charging sulfur cathodes. By incorporating liquid sulfur into Li-S batteries with a high sulfur loading of 4.2 mg cm-2, the capacity retention can reach ∼100%, even when increasing the rate from 0.1 to 3 C. This study contributes to a better understanding of the kinetics involved in the liquid-solid sulfur growth in Li-S chemistry and presents viable strategies for optimizing fast-charging operations.

2.
ACS Nano ; 16(9): 14412-14421, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36001112

RESUMEN

The electrochemical formation of liquid sulfur at room temperature on the basal plane of MoS2 has attracted much attention due to the high areal capacity and rapid kinetics of lithium-liquid sulfur chemistry. However, the liquid sulfur is converted to the solid phase once it contacts the solid sulfur crystals generated from the edge of MoS2. Thus, stable liquid sulfur cannot be formed on the entire MoS2 surface. Herein, we report entire liquid sulfur generation on hydrogen-annealed MoS2 (H2-MoS2), even under harsh conditions of large overpotentials and low working temperatures. The origins of the solely liquid sulfur formation are revealed to be the weakened interactions between H2-MoS2 and sulfur molecules and the decreased electrical polarization on the edges of the H2-MoS2. Progressive nucleation and droplet-merging growth behaviors are observed during the sulfur formation on H2-MoS2, signifying high areal capacities by releasing active H2-MoS2 surfaces. To demonstrate the universality of this strategy, other transition-metal dichalcogenides (TMDs) annealed in hydrogen also exhibit similar sulfur growth behaviors. Furthermore, the H2 annealing treatment can induce sulfur vacancies on the basal plane and partial oxidation on the edge of TMDs, which facilitates liquid sulfur formation. Finally, liquid sulfur can be generated on H2-MoS2 flakes at an ultralow temperature of -50 °C, which provides a possible development of low-temperature lithium-sulfur batteries. This work demonstrates the potential of a pure liquid sulfur-lithium electrochemical system using functionalized two-dimensional materials.

3.
J Colloid Interface Sci ; 611: 317-326, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34954607

RESUMEN

Na metal anode has attracted increasing attentions as the anode of sodium ion batteries (SIBs) due to its high theoretical capacity, low redox potential and high abundance. However, the formation of uncontrollable Na dendrite during repeated plating/stripping cycles hinders its further development and application. Herein, a sodiophilic Na metal anode host is developed by sputtering gold nanoparticles (Au NPs) into interconnected carbon nanotube modified carbon cloth (CNT/CC) to form a Au-CNT/CC architecture. Sodiophilic Au NPs effectively guide the Na metal uniform deposition and three-dimensional (3D) microporous structure offers a large surface area for nucleation and reducing the current densities. The regulated uniform Na metal deposition mechanism is investigated by the in-situ optical microscopy and simulation analysis. As a result, Au-CNT/CC electrode exhibits a low nucleation overpotential (2.2 mV) and stable cycle performance for 1600 h at 1 mA cm-2 with 2 mAh cm-2. Moreover, it even exhibits a long cycle stability for more than 800 h at 5 mA cm-2 with 2 mAh cm-2. To explore its application, a full cell coupled with a sodium vanadium phosphate coated with carbon layer (NVP@C) cathode is assembled and delivers an average discharge capacity of 80.6 mAh g-1 and coulombic efficiency of 99.6% for 400 cycles at 100 mAh g-1. Furthermore, a flexible pouch cell with Na@Au-CNT/CC as the anode is fabricated and demonstrated good flexibility and future application of wearable electronics.

4.
Small Methods ; 5(11): e2100833, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34927976

RESUMEN

Uncontrollable growth of sodium dendrites during the sodium deposition and stripping processes remains a huge challenge for achieving high-performance sodium metal batteries (SMBs), which results in ineffective utilization of metallic Na, low Coulombic efficiency, and inferior cycling life. Here, a single Co atom uniformly decorated porous nitrogen-doped carbon polyhedron (CoSA @NC) matrix has been fabricated and introduced to control the Na growth and achieve uniform Na nucleation/deposition. Cryo-electron microscopy and in situ optical microscopy techniques have been utilized to analyze the morphology change of metallic Na during plating/stripping processes. The single Co atoms evenly embedded in NC electrodes can provide stable Na-philic sites for Na ions adsorption, which is helpful to guide the uniform sodium deposition and prevent Na dendrites growth. This work thus provides an effective solution to inhibit Na dendrite growth and control Na nucleation behavior from the perspective of atomic level, towards the fabrication of high-safety and long-cycling SMBs.

5.
J Colloid Interface Sci ; 585: 118-125, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33279693

RESUMEN

A fundamental understanding of the drying behavior of droplets containing solids or solutes is important for various industrial applications. However, droplets are typically highly polydisperse and time-resolved imaging data of the process dynamics are often lacking, which makes it difficult to interpret the effects of different drying parameters. Here, the controlled drying of monodisperse emulsion droplets containing colloidal silica nanoparticles and their subsequent assembly into mesoporous silica microspheres (MSMs) is investigated using an optical microscope outfitted with a heating and vacuum stage. Quantitative imaging results on droplet shrinkage and observed contrast are compared with a theoretical mass-transfer model that is based on the droplet number density, solvent characteristics and temperature. The results presented here provide key insights in the time-resolved formation of MSMs and will enable an optimized direct synthesis of monodisperse MSMs for separation applications and beyond.

6.
ACS Appl Mater Interfaces ; 11(43): 39737-39745, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460739

RESUMEN

Metallic Li is considered as the ultimate choice of negative electrodes for Li batteries because of its largest theoretical specific capacity. However, formidable issues such as poor safety and cyclability caused by lithium dendrite growth and tremendous interfacial side reactions have strictly hindered its practical applications. Here, we report a fluorinated graphene (FG)-modified Li negative electrode (LFG) for high-performance lithium-oxygen (Li-O2) cells. The results show that only 3 wt % FG introduction leads to a significant enhancement on rate capability and cycling life of Li electrodes. Compared with the half cells with bare Li, the cells with LFG exhibit much more stable voltage profiles even at a large areal capacity up to 5 mA h cm-2 or a large current density up to 5 mA cm-2. Li-O2 cells with the LFG anode show a longer cycle life than the cell with the pristine lithium anode. It was found that a LiF-rich layer could be in situ built upon cycling when FG was used, which ensures uniform Li stripping/plating and effectively suppresses Li dendrite growth. Density functional theory calculations confirm the possibility of conversion from FG to graphene and LiF after Li intercalation into LFG during cycling. In situ optical microscopy observation vividly exhibits the obvious inhibition effect of FG for Li dendrite growth.

7.
ACS Appl Mater Interfaces ; 11(26): 23780-23788, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31180633

RESUMEN

Surface texture tailoring has the potential to increase the effectiveness of dry particle collection wipes, as a wipe's topographical features control the intimate surface contact made with particles on the substrate (critical for van der Waals-governed adhesion). However, texture-tailoring approaches have not yet been widely explored, in part because of a lack of understanding of the specific wipe topographies and wipe/particle interactions that maximize particle collection. Here we describe an in situ optical microscopy technique that enables direct observation of micrometer-scale particle-wipe interactions occurring at the wipe-substrate interface during contact sampling. The technique is demonstrated for nonwoven meta-aramid (Nomex) collection wipes with particles ranging from 1 to 90 µm in diameter and substrates of different topographies (glass and nylon coil zipper). Experiments with hemispherically coated Janus particles allow rolling motions to be distinguished from sliding motions, providing detailed information about how particles move prior to capture or release by the wipe. Particle-fiber and particle-particle interactions are seen to play important roles in particle capture, suggesting that conventional sphere-on-plane models are inadequate to describe adhesion behavior in these systems. Micrographs show how loose, flexible fibers in roughened textile wipes interrogate the valleys of uneven substrate topographies, allowing capture of particles that might otherwise be trapped within the substrate's grooves and depressions. The materials used in this work are specifically relevant to explosives detection, but the in situ visualization technique is transferable for the study of any application involving dry particle collection, such as toxic substance sampling and dust removal.

8.
Proc Natl Acad Sci U S A ; 116(3): 765-770, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602455

RESUMEN

Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur's melting point (Tm = 115 °C), with fractional supercooling change (Tm - Tsc)/Tm larger than 0.40. In operando light microscopy captured the rapid merging and shape relaxation of sulfur droplets, indicating their liquid nature. Micropatterned electrode and electrochemical current allow precise control of the location and size of supercooled microdroplets, respectively. Using this platform, we initiated and observed the rapid solidification of supercooled sulfur microdroplets upon crystalline sulfur touching, which confirms supercooled sulfur's metastability at room temperature. In addition, the formation of liquid sulfur in electrochemical cell enriches lithium-sulfur-electrolyte phase diagram and potentially may create new opportunities for high-energy Li-S batteries.

9.
ACS Appl Mater Interfaces ; 10(17): 15270-15280, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29648435

RESUMEN

Sodium (Na) metal anodes with stable electrochemical cycling have attracted widespread attention because of their highest specific capacity and lowest potential among anode materials for Na batteries. The main challenges associated with Na metal anodes are dendritic formation and the low density of deposited Na during electrochemical plating. Here, we demonstrate a fluoroethylene carbonate (FEC)-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide (NaFSI) salt for the stable and dense deposition of the Na metal during electrochemical cycling. The novel electrolyte combination developed here circumvents the dendritic Na deposition that is one of the primary concerns for battery safety and constructs the uniform ionic interlayer achieving highly reversible Na plating/stripping reactions. The FEC-NaFSI constructs the mechanically strong and ion-permeable interlayer containing NaF and ionic compounds such as Na2CO3 and sodium alkylcarbonates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA