Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 286(Pt 1): 131562, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34315082

RESUMEN

Rate coefficients for the gas-phase reactions of OH radicals with a series of fluorinated diketones have been determined for the first time at (298 ± 3) K and atmospheric pressure using the relative method and FTIR spectroscopy and GC-FID to monitor both reactants and references. The following values, in 10-11 cm3 molecule-1 s-1, were obtained for 1,1,1-trifluoro-2,4-pentanedione (TFP), 1,1,1-trifluoro-2,4-hexanedione (TFH) and 1,1,1-trifluoro-5-methyl-2,4-hexanedione (TFMH), respectively: k1(TFP + OH) = (1.3 ± 0.4), k2(TFH + OH) = (2.2 ± 0.8), k3(TFMH + OH) = (3.3 ± 1.0). The results are discussed with respect to the keto-enolic tautomerization specific for ß-diketones. Based on the present results, the tropospheric lifetimes of TFP, TFH and TFMH upon degradation by OH radicals were calculated as 21, 13 and 8 h, respectively indicating that transport might play a role in the atmospheric fate of the studied compounds. Photochemical ozone creation potentials were estimated for TFP, TFH and TFMH to be: 23, 29 and 34, respectively.


Asunto(s)
Radical Hidroxilo , Ozono , Cloro , Cinética , Fotólisis
2.
ACS Appl Mater Interfaces ; 11(34): 30810-30818, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31369703

RESUMEN

This study describes a systematic investigation of the electrocatalytic activity of poly[Ni(salen)] films, as catalysts for the electro-oxidation of Cn alcohols (Cn = methanol, ethanol, and glycerol) in alkaline medium. The [Ni(salen)] complex was electropolymerized on a glassy carbon surface and electrochemically activated in NaOH solution by cyclic voltammetry. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy results indicate that during the activation step the polymeric film hydrolyzes, leading to the formation of ß-Ni(OH)2 spherical nanoparticles, with an average size of 2.4 ± 0.5 nm, encapsulated with the poly[Ni(salen)] film. Electrochemical results obtained together with the in situ Fourier transform infrared spectroscopy confirm that the electro-oxidation of methanol, ethanol, and glycerol occurs by involving a cycling oxidation of ß-Ni(OH)2 with the formation of ß-NiOOH species, followed by the charge transfer to the alcohols, which regenerates ß-Ni(OH)2. Analyses of the oxidation products at low potentials indicate that the major product obtained during the oxidation of methanol and glycerol is the formate, while the oxidation of ethanol leads to the formation of acetate. On the other hand, at high potentials (E = 0.6 V), there is evidence that the oxidation of Cn alcohols leads to carbonate ions as an important product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA