Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 37(10): 1738-1750, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38754847

RESUMEN

OBJECTIVE: This study investigated the impact of Aspergillus niger lysing polysaccharide monooxygenase (AnLPMO) on in vitro rumen microbial fermentation of rice straw. METHODS: AnLPMO was heterologously expressed in Escherichia coli. Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyzed the surface structure of rice straw after AnLPMO treatment. Two in vitro experiments, coupled with 16S highthroughput sequencing and quantitative real-time polymerase chain reaction techniques, assessed the influence of AnLPMO on rumen microbial fermentation of rice straw. RESULTS: AnLPMO exhibited peak activity at 40°C and pH 6.5, with a preference for rice straw xylan hydrolysis, followed by Avicel. AnLPMO application led to the fractional removal of cellulose and hemicelluloses and a notable reduction in the levels of carbon elements and C-C groups present on the surface of rice straw. Compared to the control (no AnLPMO), supplementing AnLPMO at 1.1 to 2.0 U significantly enhanced in vitro digestibility of dry matter (IVDMD, p<0.01), total gas production (p<0.01), and concentrations of total volatile fatty acids (VFA, p<0.01), acetate (p<0.01), and ammonia-N (p<0.01). Particularly, the 1.4 U AnLPMO group showed a 14.8% increase in IVDMD. In the second experiment, compared to deactivated AnLPMO (1.4 U), supplementing bioactive AnLPMO at 1.4 U increased IVDMD (p = 0.01), total gas production (p = 0.04), and concentrations of total VFA (p<0.01), propionate (p<0.01), and ammonia-N (p<0.01), with a limited 9.6% increase in IVDMD. Supplementing AnLPMO stimulated the growth of ruminal bacterial taxa facilitating fiber degradation, including Proteobacteria, Spirochaetes, Succinivibrio, Rikenellaceae_RC9_ Gut_Group, Prevotelaceae_UCG-003, Desulfovibrio, Fibrobacter succinogenes, Ruminococcus albus, R. flavefaciens, Prevotella bryantii, P. ruminicola, and Treponema bryantii. CONCLUSION: These findings highlight AnLPMO's potential as a feed additive for improving rice straw utilization in ruminant production.

2.
Anim Sci J ; 95(1): e13923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38337192

RESUMEN

This study was done to investigate which components of rice bran (RB) are involved in the inhibition of methanogenesis by fractionating the rice bran and adding it to a rumen in vitro culture system. The RB extract obtained using ethanol and water was screened in an in vitro fermentation system. The experimental treatment conditions were as follows: a control group containing a substrate without supplements; substrates with 0.06 g of RB; 0.6 mL of ethanol; 0.6 mL of distilled water (DW); 0.6 mL of ethanol-soluble fraction (ESF); 0.06 g of ethanol-insoluble rice bran (EIRB); 0.6 mL of water-soluble fraction (WSF); and 0.06 g of water-insoluble rice bran (WIRB). Based on the result of the analysis, the addition of ESF significantly decreased CH4 and CH4 /g dry matter digested, methanogen population (p < 0.05), while gas and dry matter digestibility (DMD) were comparable with the control group. Total short-chain fatty acid (SCFA), and proportion of propionate were reduced, and the proportion of butyrate was increased by the addition of ethanol and ESF (p < 0.05). This result suggests that the supplementation of 10% ESF can substantially reduce methane production in vitro without a negative effect on substrate digestibility.


Asunto(s)
Oryza , Rumen , Animales , Rumen/metabolismo , Fermentación , Agua , Metano/metabolismo , Etanol/metabolismo , Etanol/farmacología , Extractos Vegetales/farmacología , Dieta , Digestión , Alimentación Animal/análisis
3.
Microorganisms ; 11(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37630540

RESUMEN

Tea seed oil (TSO) was investigated for its effects on rumen fermentation and in vitro parameters of bacterial communities in water buffalo diets containing Siraitia grosvenorii and soybean residues. TSO was added at rates of 0% (control group (CT)), 0.5% (T1), 1% (T2), and 2% (T3) of the in vitro fermentation substrate weight (dry matter (DM) basis). T2 and T3 had significantly lower acetate and total volatile fatty acid contents but a significantly higher microbial crude protein content than CT. The lowest NH3-N content was observed in T1 and T2. Treatment significantly increased DM digestibility, with the highest percentage observed in T2. T2 showed significantly higher crude protein digestibility than CT. TSO supplementation significantly increased the C18:2n6c, C18:2 trans-10, cis-12, and C20:4n6 concentrations compared to those in CT. The total number of bacteria was significantly lower in T2 than in CT. TSO supplementation decreased the total bacteria, fungi, and methanogen populations but increased rumen microorganism diversity and richness. In conclusion, TSO can regulate the number and flora of rumen microorganisms through antimicrobial activity, thereby affecting rumen fermentation patterns, reducing methane production, and improving nutrient digestibility, and an optimal supplementation rate appears to be achieved with 1% TSO (DM basis).

4.
Arch Anim Nutr ; 77(4): 308-322, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558228

RESUMEN

Saccharina latissima is a brown seaweed that could be used in ruminant feeding, but its fast deteriorating and seasonal growth nature limit their utilisation in the practice. Ensiling could be used as a preservation method, but information of its effects on the nutritional value of the seaweed is limited. This study evaluated the in vitro ruminal fermentation of different S. latissima silages using ruminal inoculum either from goats fed a mixed diet (60:40 oat hay:concentrate) or from sheep fed a high-forage diet (90:10 alfalfa hay:concentrate) to simulate different small ruminant production systems. S. latissima was ensiled in vacuum bags without additives (Control), with formic acid (4 g/kg seaweed; FA), with lactic acid bacteria (LAB) or with LAB after a pre-wilting treatment to reach a seaweed dry matter (DM) content of 30% (30LAB). Ensiling S. latissima decreased (p < 0.05) the content in DM, neutral detergent fibre and total extractable polyphenols, but nitrogen and fat content were unaffected. For both ruminal inoculums, ensiling decreased (p < 0.05) the asymptotic gas production after 120 h of fermentation (excepting for FA silage with goats' inoculum), but the total volatile fatty acid (VFA) production was unaffected. The VFA profile shifted towards greater (p < 0.05) acetate and lower (p < 0.05) propionate proportions in all silages compared with the pre-ensiling S. latissima. When goats inoculum was used, greater (p < 0.05) CH4 production compared with pre-ensiling S. latissima was observed in all silages, except Control one, which led to greater (p < 0.05) CH4/total VFA ratio. In contrast, no differences among samples (p > 0.05) in either CH4 production or CH4/total VFA ratio were observed when sheep' inoculum was used. Fermentation of all samples started earlier with goats' inoculum than with sheep' inoculum, which was attributed to the different diet fed to the animals. These results suggest that ensiling S. latissima with either formic acid or lactic acid bacteria could be a viable conservation method to preserve the nutritive value.


Asunto(s)
Alimentación Animal , Dieta , Animales , Ovinos , Dieta/veterinaria , Alimentación Animal/análisis , Fermentación , Ensilaje/análisis , Ácidos Grasos Volátiles/metabolismo , Cabras , Rumen/metabolismo
5.
Animals (Basel) ; 13(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37174580

RESUMEN

This study investigated the effect of co-ensiling increasing levels of artichoke bracts (Cynara cardunculus L.) with berseem (Trifolium alexandrinum L.) (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on silage quality after 0, 30, 60, and 120 days. Moreover, the in vitro rumen fermentation characteristics and methane (CH4) and ammonia (NH3-N) production were evaluated using a buffalo inoculum source. The results showed that pH of the silage and the concentration of acetic, propionic, butyric acid, and NH3-N significantly decreased (L; p < 0.01) with the increasing amounts of artichoke bracts in the mixture. At 30 and 60 days of ensiling, the highest lactic acid concentration was observed at intermediate proportions of artichoke bracts (p < 0.01). Cumulative gas production was higher in artichoke bracts than in the berseem silage. After 24 h of incubation, the highest value (p < 0.05) of truly dry matter, organic matter, natural detergent fiber degradability, and NH3-N concentration was recorded with 500 g/kg of forage mixtures. As the artichoke bract concentration increased, the partitioning factor and ruminal pH declined linearly (p ≤ 0.05). No significant differences were observed for total volatile fatty acids and volatile fatty acids molar proportions. In summary, co-ensiling artichoke bracts with berseem at a ratio of 1:1 might be a promising and easy method for the production of high-quality silage from legume forage with positively manipulating rumen fermentation.

6.
Anim Sci J ; 94(1): e13818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36864691

RESUMEN

This experiment was conducted to investigate the effects of different dosages and types of medium-chain fatty acids (MCFAs) on rumen fermentation in vitro under low- and high-concentrate diets. For this purpose, two in vitro experiments (Exp.) were conducted. In Exp. 1, the concentrate-roughage ratio of the fermentation substrate [total mixed rations (TMR), dry matter (DM) basis] was 30:70 (low-concentrate diet), while in Exp. 2, it was 70:30 (high-concentrate diet). Three types of MCFAs with octanoic acid (C8 ), capric acid (C10 ), and lauric acid (C12 ) were added accounting for 1.5%, 6%, 9%, and 15% of the in vitro fermentation substrate weight (200 mg or 1 g, DM basis) based on control group, respectively. The results showed that the addition of MCFAs all could significantly reduce methane (CH4 ) production and the number of rumen protozoa, methanogens, and methanobrevibacter under the two diets with the dosages increased (p < 0.05). In addition, MCFAs had a certain degree of improvement on rumen fermentation and influenced in vitro digestibility under low- and high-concentrate diets, and their effects were related to the dosages and types of MCFAs. This study provided a theoretical basis for the selection of types and dosages of MCFAs in ruminants production.


Asunto(s)
Ácidos Grasos , Rumen , Animales , Fermentación , Dieta/veterinaria , Nutrientes , Metano
7.
Animals (Basel) ; 12(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552459

RESUMEN

The effects of including wine lees (WL), exhausted olive cake (EOC) and a 1:1 mixture of EOC and tomato pomace (EOCTP) in diets for fattening ruminants on in vitro fermentation parameters and CH4 production were analysed. Ten diets were studied, containing either none of the tested by-products (control), or 6.0, 12.0 or 18.0% of WL, EOC and ECOTP formulated to have similar protein and fiber content. Diets were incubated in vitro with sheep ruminal fluid to measure gas production kinetics and fermentation parameters. Increasing the level of WL, EOC and EOCTP decreased linearly (p ≤ 0.009) the potential gas production, but other gas production parameters were unaffected (p > 0.05), excepting that EOCTP increased the gas production rate. No differences (p ≥ 0.0.05) among diets were observed in total volatile fatty acid (VFA) production at 24 h of incubation for EOC and EOCTP, but NH3-N concentration decreased (p ≤ 0.003). In contrast, WL at 12.0 and 18.0% decreased (p < 0.05) total VFA production and increased the acetate/propionate ratio (p < 0.05). None of the by-products had an effect on CH4 production (p ≥ 0.0.05). Results indicate that EOC and EOCTP could be included up to 18.0% in fattening diets, but lower levels of WL are recommended.

8.
Front Microbiol ; 13: 991387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187999

RESUMEN

Some excellent legume forages are difficult to ensile naturally due to their high buffering capacity and low water-soluble carbohydrate content. This may cause serious problems like proteolysis. In the present study, strains of lactic acid bacteria with high acid productivity and high tannin tolerance were screened from different silages and combined with tannic acid (TA) as an addition to ensiling. The screened strains were identified as Lactobacillus plantarum (LP), with four of these strains then selected for their high tannin tolerance. Stylosanthes guianensis and whole-plant soybean (WPS) were ensiled with 1 and 2% (fresh matter basis) TA, four LP strains alone (6 log10 colony forming units per gram of fresh matter), or TA combined with LP strains. Fermentation parameters and in vitro rumen fermentation characteristics were analyzed after 30 days of fermentation. The results showed that TA + LP can be used to reduce pH values (P < 0.01), non-protein nitrogen (P < 0.01), and ammonia-nitrogen (P < 0.01). The in vitro crude protein digestibility of WPS silage was also decreased with the addition of TA + LP (P < 0.01). These results indicate that the addition of TA combined with tannin tolerance LP strains may improve the fermentation quality of legume silage, especially for reducing proteolysis.

9.
Front Microbiol ; 13: 835913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633729

RESUMEN

This study characterized the nutritive and microbial profiles and the fermentation characteristics of silage with the following compositions on a dry matter (DM) basis: (1) 100% sorghum, (2) 70% sorghum + 30% carrot or pumpkin, and (3) 40% sorghum + 60% carrot or pumpkin. The treatments were further divided based on the addition or no addition of a probiotic inoculant. After 70 days of ensiling, the silage was incubated for 48 h using the in vitro batch culture technique. Crude protein and non-fiber carbohydrates in the silage increased (P ≤ 0.01) by 5.7 percent point (pp) and 9.6 pp, respectively, with pumpkin at 60% DM. The V4 region of the 16S rRNA gene was sequenced to profile pre-ensiled and ensiled archeal and bacterial communities. Silages containing carrot or pumpkin strongly influenced the microbial structure (PERMANOVA: R 2 = 0.75; P < 0.001), despite the ensiled treatments being dominated by Lactobacillus spp., except for the control, which was dominated by Weissella and Pediococcus spp. (P < 0.01). Linear discriminant analysis indicated that carrot and pumpkin silages were responsible for the increased relative abundance of Lactobacillus and Acinetobacter spp. (log LDA score ≥ 2), respectively. After 48 h of incubation, carrot and pumpkin inclusion increased (P < 0.01) the in vitro DM digestibility by 22.5 and 31.3%, increased the total volatile fatty acids (VFAs) by 16 and 20.6% (P < 0.01), respectively, and showed a tendency (P = 0.07) to increase the gas production. Therefore, this study supports the use of carrot or pumpkin in sorghum silages to maximize feed digestibility and total VFA concentrations.

10.
Molecules ; 27(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408616

RESUMEN

In recent years, animal husbandry has aimed at improving the conditions of livestock animals useful for humans to solve environmental and health problems. The formulation of animal feeds or supplements based on antioxidant plant compounds is considered a valuable approach and an alternative for livestock productivity. Forest biomass materials are an underestimated source of polyphenolic compounds whose sustainable recovery could provide direct benefits to animals and, indirectly, human nutrition. In this context, an alcohol extract from leaves of Fagus sylvatica L. was first investigated through an untargeted ultra-high-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) approach. Then, it was fractionated into a fatty acid-rich and a polyphenolic fraction, as evidenced by total lipid, phenol, and flavonoid content assays, with antiradical and reducing activity positively correlated to the latter. When tested in vitro with rumen liquor to evaluate changes in the fermentative parameters, a significant detrimental effect was exerted by the lipid-rich fraction, whereas the flavonoid-rich one positively modulated the production of volatile fatty acids (i.e., acetate, butyrate, propionate, etc.).


Asunto(s)
Fagus , Rumen , Alimentación Animal/análisis , Animales , Cromatografía Líquida de Alta Presión/métodos , Dieta , Fagus/química , Ácidos Grasos Volátiles/metabolismo , Fermentación , Flavonoides/análisis , Hojas de la Planta/química , Rumen/metabolismo , Rumiantes
11.
Anim Biosci ; 35(9): 1379-1389, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34991191

RESUMEN

OBJECTIVE: This study identified the major lactic acid bacteria (LAB) strains from different fermented total mixed rations (FTMRs) via metataxonomic analysis and evaluated the ability of their standard strain as ensiling inoculants for corn stover silage. METHODS: The bacterial composition of eight FTMRs were analyzed by 16S rDNA sequencing. Corn stover was ensiled without LAB inoculation (control) or with 1×106 cfu/g LAB standard strain (Lactobacillus vaginalis, Lactobacillus reuteri, Lactobacillus helveticus, or Lactobacillus paralimentarius) selected from the FTMRs or 10 g/t commercial silage inoculant (CSI) around 25°C for 56 days. For each inoculation, a portion of the silage was sampled to analyze ensiling characteristics at time intervals of 0, 1, 3, 7, 14, 28, and 56 days, gas production (GP), microbial crude protein and volatile fatty acids as the measurements of rumen fermentation characteristics were evaluated in vitro with the silages of 56 days after 72 h incubation. RESULTS: Lactobacillus covered >85% relative abundance of all FTMRs, in which L. pontis, L. vaginalis, L. reuteri, L. helveticus, and L. paralimentarius showed >4% in specific FTMRs. CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. Silage inoculated with L. paralimentarius and CSI produced more lactic acid the early 14 days. Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. For the in vitro rumen fermentation, silage inoculated with CSI produced more potential GP, isobutyric acid, and isovaleric acid; silage inoculated with L. helveticus produced more potential GP and isovaleric acid, silage inoculated with L. paralimentarius or L. reuteri produced more potential GP only. CONCLUSION: The standard strain L. paralimentarius (DSM 13238) is a promising ensiling inoculant for corn stover silage. The findings provide clues on strategies to select LAB to improve the quality of silage.

12.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1228-1237, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34907603

RESUMEN

Ammoniation of oil palm frond (OPF) with non-protein nitrogen (N) sources has been shown to improve the nutritional value and digestibility of OPF in ruminants. This study evaluated the effect of treating OPF without (control) or with different urea levels (1%-5%) on chemical composition and in vitro gas production, digestibility and fermentation properties using goat rumen fluids. The results showed that the treated OPF with urea (1%-5%) had significantly lower (p < 0.05) dry matter (DM), organic matter (OM) and ash contents than that of the control. The crude protein (CP) content of treated OPF increased (linear p < 0.05; quadratic p < 0.05) with increasing levels of urea inclusion (1%-5%), whereas the contents of neutral detergent fibre (NDF) and acid detergent lignin (ADL) were significantly (p < 0.05) decreased. The CH4 (ml/500 mg DM incubated) production decreased (linear p < 0.05) with increasing levels of urea inclusion in treated OPF silage. However, in vitro DM and OM degradability were significantly (p < 0.05) increased by higher inclusion levels of urea (4% and 5%). OPF treated with 4% or 5% urea also revealed significantly (p < 0.05) higher total volatile fatty acids and ammonia-N than the control and OPFs treated with 1%-3% urea. Ammoniation of OPF with urea improved its nutritional value and in vitro rumen fermentation profiles in goats. The impact was more pronounced for 4% or 5% urea-treated OPF.


Asunto(s)
Cabras , Rumen , Animales , Rumen/metabolismo , Fermentación , Urea/farmacología , Digestión , Detergentes/metabolismo , Detergentes/farmacología , Alimentación Animal/análisis , Ensilaje , Nutrientes , Fibras de la Dieta/farmacología , Dieta/veterinaria
13.
Anim Biosci ; 34(1): 56-65, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32810940

RESUMEN

OBJECTIVE: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. METHODS: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. RESULTS: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. CONCLUSION: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

14.
Animals (Basel) ; 10(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114191

RESUMEN

The study analyzed the characteristics, chemical composition, and in vitro gas production kinetics of Porphyra umbilicalis and Saccharina latissima silages. Each seaweed was ensiled in vacuum bags (three bags/silage) following a 2 × 3 factorial design, with two pre-treatments (unwilted or pre-wilted) and three silage types: unwashed seaweed ensiled without additive; seaweed washed and ensiled without additive; and seaweed washed and ensiled with 4 g of formic acid (FAC) per kg seaweed. Silages were kept for 3 months in darkness at 20 °C. Pre-wilting prevented (p < 0.001) effluent formation and reduced (p ≤ 0.038) the production of NH3-N and volatile fatty acids for both seaweeds. Both pre-wilting and washing increased (p < 0.05) the ruminal degradability of P. umbilicalis silages but not of S. latissima silages. The pH of the FAC-treated silages was below 4.0, but ranged from 4.54 to 6.23 in non FAC-treated silages. DL-lactate concentrations were low (≤23.0 g/kg dry matter) and acetate was the predominant fermentation product, indicating a non-lactic fermentation. The estimated ruminal degradability of the P. umbilicalis and S. latissima silages was as average, 59.9 and 86.1% of that for high-quality rye-grass silages, respectively, indicating a medium-low nutritional value of these seaweed silages for ruminants.

15.
Microorganisms ; 8(10)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33081073

RESUMEN

This study investigated the effects of essential oil (EO) from three Korean wormwood (Artemisia Montana) plants on in vitro ruminal digestibility, fermentation, and microbial diversity. Dried (0.5 g) soybean meal (SBM) or bermudagrass hay (BGH) were incubated in buffered rumen fluid (40 mL) for 72 h with or without EO (5 mg/kg) from Ganghwa (GA), Injin (IN), or San (SA) wormwood (Experiment 1). Both SA and IN improved (p < 0.05) dry matter digestibility (DMD) of BGH, while GA reduced (p < 0.05) total short-chain fatty acid of BGH and SBM. Besides, SA increased (p < 0.05) numbers of Ruminococcus albus and Streptococcus bovis in SBM. Experiment 2 examined different doses (0, 0.1, 1, and 10 mg/kg) of SA, the most promising EO from Experiment 1. Applying SA at 10 mg/kg gave the highest DMD (L; p < 0.01) and neutral detergent fiber (Q; p < 0.05) digestibility for BGH. Applying SA at 1 mg/kg gave the highest R. albus population (Q; p < 0.05) in SBM. Therefore, SA was better than GA and IN at improving rumen fermentation, and the 0.1 to 1 and 10 mg/kg doses improved ruminal fermentation and in vitro digestibility of SBM and BGH, respectively.

16.
Animals (Basel) ; 10(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707953

RESUMEN

The nutritive values for ruminants of cauliflower (CAU) and Romanesco (ROM) wastes (leaves, stems and sprouts) were assessed by analyzing their chemical composition, in vitro ruminal fermentation, and in vitro intestinal digestibility. In addition, the in vitro ruminal fermentation of diets containing increasing amounts of CAU was studied. The dry matter (DM) content of leaves, stems and sprouts of both vegetables was lower than 10%, but they contained high crude protein (CP; 19.9 to 33.0%) and sugar (16.3 to 28.7%) levels, and low neutral detergent fiber (21.6 to 32.3%). Stems and sprouts were more rapidly and extensively fermented in the rumen than leaves, but there were only minor differences the fermentation profiles of both vegetables. The estimated metabolizable energy content ranged from 9.3 (leaves) to 10.8 (sprouts) MJ/kg DM. The CP rumen degradability (12-h in situ incubations) was greater than 80.0% for all fractions, and the in vitro intestinal digestibility of CP ranged from 85.7 to 93.2%. The inclusion of up to 24% of dried CAU in the concentrate of a mixed diet (40:60 alfalfa hay:concentrate) increased the in vitro rumen fermentation of the CAU diet, but did not affect methane (CH4) production, indicating the lack of antimethanogenic compounds in CAU.

17.
Asian-Australas J Anim Sci ; 33(7): 1087-1095, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32054167

RESUMEN

OBJECTIVE: The present study aimed to evaluate the effects of γ-aminobutyric acid (GABA)- producing bacteria (GPB) on in vitro rumen fermentation and on the growth performance and meat quality of Hanwoo steers. METHODS: The effects of GPB (Lactobacillus brevis YM 3-30)-produced and commercially available GABA were investigated using in vitro rumen fermentation. Using soybean meal as a substrate, either GPB-produced or commercially available GABA were added to the in vitro rumen fermentation bottles, as follows: control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB; T3, 2 g/L autoclaved GPB; T4, 5 g/L autoclaved GPB; T5, 2 g/L GABA; and T6, 5 g/L GABA. In addition, 27 Hanwoo steers (602.06±10.13 kg) were subjected to a 129-day feeding trial, during which they were fed daily with a commercially available total mixed ration that was supplemented with different amounts of GPB-produced GABA (control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB). The degree of marbling was assessed using the nine-point beef marbling standard while endotoxin was analyzed using a Chromo-Limulus amebocyte lysate test. RESULTS: In regard to in vitro rumen fermentation, the addition of GPB-produced GABA failed to significantly affect pH or total gas production but did increase the ammonia nitrogen (NH3-N) concentration (p<0.05) and reduce total biogenic amines (p<0.05). Animals fed the GPB-produced GABA diet exhibited significantly lower levels of blood endotoxins than control animals and yielded comparable average daily gain, feed conversion ratio, and beef marbling scores. CONCLUSION: The addition of GPB improved in vitro fermentation by reducing biogenic amine production and by increasing both antioxidant activity and NH3-N production. Moreover, it also reduced the blood endotoxin levels of Hanwoo steers.

18.
Front Microbiol ; 10: 2599, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803152

RESUMEN

Ensiling vegetables with forage crops is a suggested method of waste diversion and can be directly utilized as a livestock feed. Carrot or pumpkin, ensiled at 0, 20, or 40% dry matter (DM) with crop sorghum, and with or without a second-generation silage inoculant were assessed for nutritive composition, organic acid profiles, aerobic stability and in vitro rumen fermentation characteristics. The study was a completely randomized design, with the fixed effects consisting of vegetable type (carrot vs. pumpkin), level (i.e., the level of vegetables), inoculant (inoculant or non-inoculant) and the interactions, and mini-silos within treatment as the random effect. The experimental unit for sorghum treatments represented by each mini-silo (5 kg capacity). Silage was sampled after 70-days ensiling for nutrient composition, 14-day aerobic stability, organic acid profiles and microbial diversity. After 24 h in vitro incubation, rumen fermentation parameters were assessed, measuring gas and methane (CH4) production, in vitro digestibility and volatile fatty acid concentrations. Sorghum ensiled with carrot or pumpkin at 20% or 40% DM increased crude fat (P ≤ 0.01) and decreased (P ≤ 0.01) silage surface temperature upon aerobic exposure compared to the control. Bacterial communities analyzed through 16S rRNA gene sequencing linearly increased (P ≤ 0.01) in diversity across both vegetables when the vegetable proportion was increased in the silage; dominated by Lactobacillus species. ITS analysis of the fungal microbiota upon silage opening and after 14 days (aerobic stability) identified increased (P ≤ 0.03) fungal diversity with increasing vegetable proportions, predominantly populated by Fusarium denticulatum, Issatchenkia orientalis, Kazachstania humilis, and Monascus purpureus. Upon assessment in vitro, there was an increase (P ≤ 0.04) in in vitro digestibility and some CH4 parameters (% CH4, and mg CH4/g DM), with no effect (P ≥ 0.17) on remaining CH4 parameters (mL CH4/g DM, mg CH4/g digested DM), gas production or pH. However, increasing vegetable amount decreased percentage of acetic acid and increased percentage of propionic acid of the total VFA, decreasing A:P ratio and total VFA concentration as a result (P ≤ 0.01). The results from this study indicate including carrot or pumpkin at 20 or 40% DM in a sorghum silage can produce a highly digestible, microbially diverse and energy-rich livestock feed.

19.
Animals (Basel) ; 9(10)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652535

RESUMEN

This study was designed to analyze the chemical composition and in vitro rumen fermentation of eight seaweed species (Brown: Alaria esculenta, Laminaria digitata, Pelvetia canaliculata, Saccharina latissima; Red: Mastocarpus stellatus, Palmaria palmata and Porphyra sp.; Green: Cladophora rupestris) collected in Norway during spring and autumn. Moreover, the in vitro ruminal fermentation of seventeen diets composed of 1:1 oat hay:concentrate, without (control diet) or including seaweeds was studied. The ash and N contents were greater (p < 0.001) in seaweeds collected during spring than in autumn, but autumn-seaweeds had greater total extractable polyphenols. Nitrogen in red and green seaweeds was greater than 2.20 and in brown seaweeds, it was lower than 1.92 g/kg DM. Degradability after 24 h of fermentation was greater in spring seaweeds than in autumn, with Palmaria palmata showing the greatest value and Pelvetia canaliculata the lowest. Seaweeds differed in their fermentation pattern, and autumn Alaria esculenta, Laminaria digitata, Saccharina latissima and Palmaria palmata were similar to high-starch feeds. The inclusion of seaweeds in the concentrate of a diet up to 200 g/kg concentrate produced only subtle effects on in vitro ruminal fermentation.

20.
AMB Express ; 9(1): 123, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363877

RESUMEN

Supplementation of appropriate probiotics can improve the health and productivity of ruminants while mitigating environmental methane production. Hence, this study was conducted to determine the effects of Enterococcus faecium SROD on in vitro rumen fermentation, methane concentration, and microbial population structure. Ruminal samples were collected from ruminally cannulated Holstein-Friesian cattle, and 40:60 rice straw to concentrate ratio was used as substrate. Fresh culture of E. faecium SROD at different inclusion rates (0, 0.1%, 0.5%, and 1.0%) were investigated using in vitro rumen fermentation system. Addition of E. faecium SROD had a significant effect on total gas production with the greatest effect observed with 0.1% supplementation; however, there was no significant influence on pH. Supplementation of 0.1% E. faecium SROD resulted in the highest propionate (P = 0.005) but the lowest methane concentration (P = 0.001). In addition, acetate, butyrate, and total VFA concentrations in treatments were comparatively higher than control. Bioinformatics analysis revealed the predominance of the bacterial phyla Bacteroidetes and Firmicutes and the archaeal phylum Euryarchaeota. At the genus level, Prevotella (15-17%) and Methanobrevibacter (96%) dominated the bacterial and archaeal communities of the in vitro rumen fermenta, respectively. Supplementation of 0.1% E. faecium SROD resulted in the highest quantities of total bacteria and Ruminococcus flavefaciens, whereas 1.0% E. faecium SROD resulted in the highest contents of total fungi and Fibrobacter succinogenes. Overall, supplementation of 0.1% E. faecium SROD significantly increased the propionate and total volatile fatty acids concentrations but decreased the methane concentration while changing the microbial community abundance and composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA