Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Horm Behav ; 165: 105616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39168073

RESUMEN

Pregnancy and motherhood can have long-term effects on cognition and brain aging in both humans and rodents. Estrogens are related to cognitive function and neuroplasticity. Estrogens can improve cognition in postmenopausal women, but the evidence is mixed, partly due to differences in age of initiation, type of menopause, dose, formulation and route of administration. Additionally, past pregnancy influences brain aging and cognition as a younger age of first pregnancy in humans is associated with poorer aging outcomes. However, few animal studies have examined specific features of pregnancy history or the possible mechanisms underlying these changes. We examined whether maternal age at first pregnancy and estradiol differentially affected hippocampal neuroplasticity, inflammation, spatial reference cognition, and immediate early gene activation in response to spatial memory retrieval in middle-age. Thirteen-month-old rats (who were nulliparous (never mothered) or previously primiparous (had a litter) at three or seven months) received daily injections of estradiol (or vehicle) for sixteen days and were tested on the Morris Water Maze. An older age of first pregnancy was associated with impaired spatial memory but improved performance on reversal training, and increased number of new neurons in the ventral hippocampus. Estradiol decreased activation of new neurons in the dorsal hippocampus, regardless of parity history. Estradiol also decreased the production of anti-inflammatory cytokines based on age of first pregnancy. This work suggests that estradiol affects neuroplasticity and neuroinflammation in middle age, and that age of first pregnancy can have long lasting effects on hippocampus structure and function.


Asunto(s)
Estradiol , Hipocampo , Plasticidad Neuronal , Memoria Espacial , Animales , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Embarazo , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Estradiol/farmacología , Ratas , Inflamación/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Envejecimiento/fisiología , Paridad/fisiología
2.
Neurosci Biobehav Rev ; 165: 105856, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159735

RESUMEN

Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.


Asunto(s)
Encéfalo , Conducta Social , Humanos , Encéfalo/fisiología , Animales , Red Nerviosa/fisiología
3.
Cell Syst ; 15(7): 610-627.e8, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38986625

RESUMEN

Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Ritmo Circadiano , Sueño , Vigilia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Animales , Humanos , Sueño/genética , Sueño/fisiología , Ratones , Vigilia/fisiología , Vigilia/genética , Regulación de la Expresión Génica/genética , Hígado/metabolismo , Transcriptoma/genética , Privación de Sueño/genética , Privación de Sueño/fisiopatología , Masculino , Homeostasis/genética
4.
Mol Neurobiol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002058

RESUMEN

SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.

5.
Neuron ; 112(16): 2721-2731.e5, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38901431

RESUMEN

The ventral tegmental area (VTA) is a critical node in circuits governing motivated behavior and is home to diverse populations of neurons that release dopamine, gamma-aminobutyric acid (GABA), glutamate, or combinations of these neurotransmitters. The VTA receives inputs from many brain regions, but a comprehensive understanding of input-specific activation of VTA neuronal subpopulations is lacking. To address this, we combined optogenetic stimulation of select VTA inputs with single-nucleus RNA sequencing (snRNA-seq) and highly multiplexed in situ hybridization to identify distinct neuronal clusters and characterize their spatial distribution and activation patterns. Quantification of immediate-early gene (IEG) expression revealed that different inputs activated select VTA subpopulations, which demonstrated cell-type-specific transcriptional programs. Within dopaminergic subpopulations, IEG induction levels correlated with differential expression of ion channel genes. This new transcriptomics-guided circuit analysis reveals the diversity of VTA activation driven by distinct inputs and provides a resource for future analysis of VTA cell types.


Asunto(s)
Genes Inmediatos-Precoces , Optogenética , Área Tegmental Ventral , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/citología , Animales , Ratones , Optogenética/métodos , Neuronas Dopaminérgicas/metabolismo , Masculino , Neuronas/metabolismo , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN/métodos
6.
Mol Biol (Mosk) ; 58(1): 78-87, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38943581

RESUMEN

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension. ISIAH rats are characterized by genetically determined enhanced activities of the hypothalamic-pituitary-adrenocortical and sympathetic-adrenomedullary systems, suggesting a functional state of increased stress reactivity. For the first time, the temporal expression patterns of Fos and several related genes were studied in the hypothalamus of adult male hypertensive ISIAH rats after a single exposure to restraint stress for 30, 60, or 120 min. Fos transcription was activated and peaked 1 h after the start of restraint stress. The time course of Fos activation coincided with that of blood pressure increase after stress. Activation of hypothalamic neurons also alters the transcription levels of several transcription factor genes (Jun, Nr4a3, Jdp2, and Ppargc1a), which are associated with the development of cardiovascular diseases. Because Fos induction is a marker of brain neuron activation, activation of hypothalamic neurons and an increase in blood pressure were concluded to accompany increased stress reactivity of the hypothalamic-pituitary-adrenocortical and sympathoadrenal systems in hypertensive ISIAH rats during short-term restraint.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión , Hipotálamo , Animales , Hipertensión/metabolismo , Hipertensión/genética , Hipertensión/patología , Ratas , Hipotálamo/metabolismo , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Restricción Física , Estrés Psicológico/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Presión Sanguínea/genética , Estrés Fisiológico/genética , Neuronas/metabolismo , Neuronas/patología
7.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585978

RESUMEN

Immediate-early genes (IEGs) are a class of activity-regulated genes (ARGs) that are transiently and rapidly activated in the absence of de novo protein synthesis in response to neuronal activity. We explored the role of IEGs in genetic networks to pinpoint potential drug targets for Alzheimer's disease (AD). Using a combination of network analysis and genome-wide association study (GWAS) summary statistics we show that (1) IEGs exert greater topological influence across different human and mouse gene networks compared to other ARGs, (2) ARGs are sparsely involved in diseases and significantly more mutational constrained compared to non-ARGs, (3) Many AD-linked variants are in ARGs gene regions, mainly in MARK4 near FOSB, with an AD risk eQTL that increases MARK4 expression in cortical areas, (4) MARK4 holds an influential place in a dense AD multi-omic network and a high AD druggability score. Our work on IEGs' influential network role is a valuable contribution to guiding interventions for diseases marked by dysregulation of their downstream targets and highlights MARK4 as a promising underexplored AD-target.

8.
Clin Transl Immunology ; 13(4): e1503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623540

RESUMEN

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods: Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results: ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion: Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.

9.
Brain ; 147(7): 2384-2399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38462574

RESUMEN

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Proto-Oncogenes Mas , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Neuronas/metabolismo , Proteínas tau/metabolismo , Ratones , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Humanos , Ratones Transgénicos
10.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255760

RESUMEN

Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.


Asunto(s)
Ibogaína , Femenino , Masculino , Animales , Ratones , Ratones Noqueados , Ibogaína/farmacología , Receptor de Serotonina 5-HT2A/genética , N-Metilaspartato , Serotonina , Ácido Glutámico , ARN Mensajero
11.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38266644

RESUMEN

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Asunto(s)
Encéfalo , Neuronas , Ratones , Animales , Fosforilación , Encéfalo/metabolismo , Neuronas/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Piruvatos/metabolismo , Genes Inmediatos-Precoces
12.
Psychopharmacology (Berl) ; 241(4): 817-832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38081977

RESUMEN

RATIONALE: Electroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear. OBJECTIVES: To gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia. METHODS: Two injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted. RESULTS: Prepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E. CONCLUSIONS: E10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.


Asunto(s)
Antipsicóticos , Terapia Electroconvulsiva , Esquizofrenia , Ratas , Animales , Maleato de Dizocilpina/farmacología , FN-kappa B , Esquizofrenia/inducido químicamente , Esquizofrenia/terapia , Antipsicóticos/farmacología , Convulsiones/inducido químicamente , Convulsiones/metabolismo
13.
Front Mol Neurosci ; 16: 1304667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125007

RESUMEN

Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.

14.
J Virol ; 97(8): e0078123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565748

RESUMEN

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Ribonucleótido Reductasas , Humanos , Recién Nacido , Citidina Desaminasa/metabolismo , Citomegalovirus/genética , Replicación del ADN , ADN Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Inmediatas-Precoces/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
15.
Cereb Cortex ; 33(16): 9450-9464, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415464

RESUMEN

Despite previous agreement of the absence of cortical column structure in the rodent visual cortex, we have recently revealed a presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of adult Long-Evans rats. In this study, we deepened understanding of characteristics of rat ODCs. We found that this structure was conserved in Brown Norway rats, but not in albino rats; therefore, it could be a structure generally present in pigmented wild rats. Activity-dependent gene expression indicated that maturation of eye-dominant patches takes more than 2 weeks after eye-opening, and this process is visual experience dependent. Monocular deprivation during classical critical period strongly influenced size of ODCs, shifting ocular dominance from the deprived eye to the opened eye. On the other hand, transneuronal anterograde tracer showed a presence of eye-dominant patchy innervation from the ipsilateral V1 even before eye-opening, suggesting the presence of visual activity-independent genetic components of developing ODCs. Pigmented C57BL/6J mice also showed minor clusters of ocular dominance neurons. These results provide insights into how visual experience-dependent and experience-independent components both contribute to develop cortical columns during early postnatal stages, and indicate that rats and mice can be excellent models to study them.


Asunto(s)
Predominio Ocular , Corteza Visual , Animales , Ratas , Ratones , Ratas Long-Evans , Ratones Endogámicos C57BL , Corteza Visual/fisiología , Neuronas/fisiología
16.
Mol Neurobiol ; 60(10): 5738-5754, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37338805

RESUMEN

Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.


Asunto(s)
Proteínas del Tejido Nervioso , Plasticidad Neuronal , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Actinas/metabolismo , Citoesqueleto/metabolismo
17.
Cells ; 12(9)2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37174705

RESUMEN

Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.


Asunto(s)
Mastocitos , Factor de Células Madre , Humanos , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Piel/metabolismo , Factor de Células Madre/metabolismo , Factor de Células Madre/farmacología
18.
Neuron ; 111(13): 2051-2064.e6, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100055

RESUMEN

Activity-dependent expression of immediate early genes (IEGs) is critical for long-term synaptic remodeling and memory. It remains unknown how IEGs are maintained for memory despite rapid transcript and protein turnover. To address this conundrum, we monitored Arc, an IEG essential for memory consolidation. Using a knockin mouse where endogenous Arc alleles were fluorescently tagged, we performed real-time imaging of Arc mRNA dynamics in individual neurons in cultures and brain tissue. Unexpectedly, a single burst stimulation was sufficient to induce cycles of transcriptional reactivation in the same neuron. Subsequent transcription cycles required translation, whereby new Arc proteins engaged in autoregulatory positive feedback to reinduce transcription. The ensuing Arc mRNAs preferentially localized at sites marked by previous Arc protein, assembling a "hotspot" of translation, and consolidating "hubs" of dendritic Arc. These cycles of transcription-translation coupling sustain protein expression and provide a mechanism by which a short-lived event may support long-term memory.


Asunto(s)
Proteínas del Tejido Nervioso , Plasticidad Neuronal , Ratones , Animales , Plasticidad Neuronal/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Citoesqueleto/genética , Encéfalo/metabolismo , Memoria a Largo Plazo
19.
Methods Mol Biol ; 2636: 55-70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881295

RESUMEN

Mapping immediate early gene (IEG) expression levels to characterize changes in neuronal activity patterns has become a golden standard in neuroscience research. Due to straightforward detection methods such as in situ hybridization and immunohistochemistry, changes in IEG expression can be easily visualized across brain regions and in response to physiological and pathological stimulation. Based on in-house experience and existing literature, zif268 represents itself as the IEG of choice to investigate the neuronal activity dynamics induced by sensory deprivation. In the monocular enucleation mouse model of partial vision loss, zif268 in situ hybridization can be implemented to study cross-modal plasticity by charting the initial decline and subsequent rise in neuronal activity in visual cortical territory deprived of direct retinal visual input. Here, we describe a protocol for high-throughput radioactive zif268 in situ hybridization as a readout for cortical neuronal activity dynamics in response to partial vision loss in mice.


Asunto(s)
Genes Inmediatos-Precoces , Trastornos de la Visión , Corteza Visual , Animales , Ratones , Modelos Animales de Enfermedad , Hibridación in Situ , Trastornos de la Visión/genética , Trastornos de la Visión/patología , Corteza Visual/fisiopatología
20.
Biol Psychiatry ; 94(1): 68-83, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764852

RESUMEN

BACKGROUND: Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism. METHODS: Focusing on the dorsal hippocampus (dHC), a brain region critical for memory formation and cognitive functions, we assessed levels and tissue distribution of IEGs, de novo protein synthesis, and markers of protein synthesis, endosomes, autophagy, and synaptic functions in AS mice at baseline and following learning. We also tested autophagic flux and memory retention following autophagy-promoting treatment. RESULTS: AS dHC exhibited accumulation of IEGs ARC, FOS, and EGR1; autophagy proteins MLP3B, SQSTM1, and LAMP1; and reduction of the endosomal protein RAB5A. AS dHC also had increased levels of de novo protein synthesis, impaired autophagic flux with accumulation of autophagosome, and altered synaptic protein levels. Contextual fear conditioning significantly increased levels of IEGs and autophagy proteins, de novo protein synthesis, and autophagic flux in the dHC of normal mice, but not in AS mice. Enhancing autophagy in the dHC alleviated AS-related memory and autophagic flux impairments. CONCLUSIONS: A major biological deficit of AS brain is a defective protein metabolism, particularly that dynamically regulated by learning, resulting in stalled autophagy and accumulation of neuronal proteins. Activating autophagy ameliorates AS cognitive impairments and dHC protein accumulation.


Asunto(s)
Síndrome de Angelman , Ratones , Animales , Hipocampo/metabolismo , Encéfalo/metabolismo , Aprendizaje , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA