Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.135
Filtrar
1.
Ups J Med Sci ; 1292024.
Artículo en Inglés | MEDLINE | ID: mdl-39238951

RESUMEN

Background: Diffuse astrocytomas preferentially infiltrate eloquent areas affecting the outcome. A preoperative understanding of isocitrate dehydrogenase (IDH) status may offer opportunities for specific targeted therapies impacting treatment management. The aim of this study was to analyze clinical, topographical, radiological in WHO 2 astrocytomas with different IDH status and the long-term patient's outcome. Methods: A series of confirmed WHO 2 astrocytoma patients (between 2005 and 2015) were retrospectively analyzed. MRI sequences (FLAIR) were used for tumor volume segmentation and to create a frequency map of their locations into the Montreal Neurological Institute (MNI) space. The Brain-Grid (BG) system (standardized radiological tool of intersected lines according to anatomical landmarks) was used as an overlay for infiltration analysis of each tumor. Long-term follow-up was used to perform a survival analysis. Results: Forty patients with confirmed IDH status (26 IDH-mutant, IDHm/14 IDH-wild type, IDHwt) according to WHO 2021 classification were included with a mean follow-up of 7.8 years. IDHm astrocytomas displayed a lower number of BG-voxels (P < 0.05) and were preferentially located in the anterior insular region. IDHwt group displayed a posterior insular and peritrigonal location. IDHwt group displayed a shorter OS compared with IDHm (P < 0.05), with the infiltration of 7 or more BG-voxels as an independent factor predicting a shorter OS. Conclusions: IDHm and IDHwt astrocytomas differed in preferential location, number of BG-voxels and OS at long follow-up time. The number of BG-voxels affected the OS in IDHwt was possibly reflecting higher tumor invasiveness. We encourage the systematic use of alternative observational tools, such as gradient maps and the Brain-Grid analysis, to better detect differences of tumor invasiveness in diffuse low-grade gliomas subtypes.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Isocitrato Deshidrogenasa , Imagen por Resonancia Magnética , Humanos , Isocitrato Deshidrogenasa/genética , Astrocitoma/patología , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Femenino , Masculino , Estudios Retrospectivos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Pronóstico , Persona de Mediana Edad , Adulto , Mutación , Anciano , Invasividad Neoplásica , Análisis de Supervivencia , Adulto Joven
2.
Chin Clin Oncol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39260430

RESUMEN

BACKGROUND AND OBJECTIVE: The identification of mutation hot spots in the isocitrate dehydrogenase (IDH) genes is one of the most important cancer genome-wide sequencing discoveries with relevant impact in the treatment of some orphan tumors. These genes were mostly found mutated in lower-grade gliomas (LGGs), acute myeloid leukaemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs) and in cholangiocarcinoma. This aberrant genomic condition represents a therapeutic target of great interest in cancer research, especially in AML, given the limitations of currently approved therapies in this field. In this review, we investigate the role of IDH mutation and the mutant IDH (mIDH)- targeted therapies for cholangiocarcinoma and glioma. METHODS: Here, we provide an overview of the IDH mutation role and discuss its role in tumorigenesis and progression of some solid cancers, in which the therapeutic strategy can be completely changed thanks to these brand-new therapeutic options. KEY CONTENT AND FINDINGS: The encouraging early clinical data demonstrated to be a proof of concept for investigational mIDH1/2 inhibitors in tumors with a paucity of therapeutic possibilities. CONCLUSIONS: Moreover, we list the most important randomised clinical trials still active with their preliminary results.

3.
Cancers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39272871

RESUMEN

Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed. APT values were semi-automatically extracted from tumor solid and, whenever present, necrotic components. APT values were compared between groups stratified by WHO grade, IDH-mutation, MGMT promoter methylation and 1- and 2-year survival status using Wilcoxon rank-sum test, adjusting for multiple comparisons. Overall survival (OS) was analyzed in the subgroup of 48 patients with grade 4 tumors using Cox proportional-hazards models. Random-effects models were used to assess inter-subject heterogeneity of the mean APT values in each tumor component. APT values of the solid component significantly differed between patients with grades 2-3 and 4 tumors (mean 1.58 ± 0.50 vs. 2.04 ± 0.56, p = 0.028) and correlated with OS after 1 year (1.81 ± 0.58 in survivors vs. 2.17 ± 0.51 in deceased patients, p = 0.030). APT values did not differ by IDH-mutation, MGMT methylation, and 2-year survival status. Within grade 4 glioma patients, higher APT kurtosis of the solid component was a negative prognostic factor (hazard ratio = 1.60, p = 0.040). Mean APT values of the necrosis showed high inter-subject variability, although most necrotic tumors were grade 4 and IDH wildtype. In conclusion, APTw imaging in the solid component provided metrics associated with glioma grade and survival status but showed weak correlation with IDH-mutation and MGMT promoter methylation status, in contrast to previous works. Further research is needed to understand APT signal variability within the necrotic component of high-grade gliomas.

4.
BMC Neurol ; 24(1): 344, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272024

RESUMEN

BACKGROUND: Glioma is the most common brain tumor. IDH mutations occur frequently in glioma, indicating a more favorable prognosis. We aimed to explore energy metabolism-related genes in glioma to promote the research and treatment. METHODS: Datasets were obtained from TCGA and GEO databases. Candidate genes were screened by differential gene expression analysis, then functional enrichment analysis was conducted on the candidate genes. PPI was also carried out to help determine the target gene. GSEA and DO analysis were conducted in the different expression level groups of the target gene. Survival analysis and immune cell infiltrating analysis were performed as well. RESULTS: We screened 34 candidate genes and selected GLUD1 as the target gene. All candidate genes were significantly enriched in 10 KEGG pathways and 330 GO terms. GLUD1 expression was higher in IDH-mutant samples than IDH-wildtype samples, and higher in normal samples than tumor samples. Low GLUD1 expression was related to poor prognosis according to survival analysis. Most types of immune cells were negatively related to GLUD1 expression, but monocytes and activated mast cells exhibited significantly positive correlation with GLUD1 expression. GLUD1 expression was significantly related to 119 drugs and 6 immune checkpoint genes. GLUD1 was able to serve as an independent prognostic indicator of IDH-mutant glioma. CONCLUSION: In this study, we identified an energy metabolism-related gene GLUD1 potentially contributing to favorable clinical outcomes of IDH-mutant glioma. In glioma, GLUD1 related clinical outcomes and immune landscape were clearer, and more valuable information was provided for immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Metabolismo Energético , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Pronóstico , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo
5.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257804

RESUMEN

Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.

6.
BMC Med Imaging ; 24(1): 244, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285364

RESUMEN

PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1(IDH-1) mutation and Ki-67 expression in glioma. METHODS: The DWI, DCE and APTW images of 309 patients with glioma confirmed by pathology were retrospectively analyzed and divided into the IDH-1 group (IDH-1(+) group and IDH-1(-) group) and Ki-67 group (low expression group (Ki-67 ≤ 10%) and high expression group (Ki-67 > 10%)). All cases were divided into the training set, and validation set according to the ratio of 7:3. The training set was used to select features and establish machine learning models. The SVM model was established with the data after feature selection. Four single sequence models and one combined model were established in IDH-1 group and Ki-67 group. The receiver operator characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. Validation set data was used for further validation. RESULTS: Both in the IDH-1 group and Ki-67 group, the combined model had better predictive efficiency than single sequence model, although the single sequence model had a better predictive efficiency. In the Ki-67 group, the combined model was built from six selected radiomics features, and the AUC were 0.965 and 0.931 in the training and validation sets, respectively. In the IDH-1 group, the combined model was built from four selected radiomics features, and the AUC were 0.997 and 0.967 in the training and validation sets, respectively. CONCLUSION: The radiomics model established by DWI, DCE and APTW images could be used to detect IDH-1 mutation and Ki-67 expression in glioma patients before surgery. The prediction performance of the radiomics model based on the combination sequence was better than that of the single sequence model.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Antígeno Ki-67 , Mutación , Máquina de Vectores de Soporte , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Persona de Mediana Edad , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Masculino , Estudios Retrospectivos , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Multimodal , Adulto Joven , Imagen por Resonancia Magnética/métodos , Curva ROC , Medios de Contraste
7.
Acta Neuropathol Commun ; 12(1): 148, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256867

RESUMEN

Malignant transformation (MT) is commonly seen in IDH-mutant gliomas. There has been a growing research interest in revealing its underlying mechanisms and intervening prior to MT at the early stages of the transforming process. Here we established a unique pair of matched 3D cell models: 403L, derived from a low-grade glioma (LGG), and 403H, derived from a high-grade glioma (HGG), by utilizing IDH-mutant astrocytoma samples from the same patient when the tumor was diagnosed as WHO grade 2 (tumor mutational burden (TMB) of 3.96/Mb) and later as grade 4 (TMB of 70.07/Mb), respectively. Both cell models were authenticated to a patient's sample retaining endogenous expression of IDH1 R132H. DNA methylation profiles of the parental tumors referred to LGG and HGG IDH-mutant glioma clusters. The immunopositivity of SOX2, NESTIN, GFAP, OLIG2, and beta 3-Tubulin suggested the multilineage potential of both models. 403H was more prompt to cell invasion and developed infiltrative HGG in vivo. The differentially expressed genes (DEGs) from the RNA sequencing analysis revealed the tumor invasion and aggressiveness related genes exclusively upregulated in the 403H model. Pathway analysis showcased an enrichment of genes associated with epithelial-mesenchymal transition (EMT) and Notch signaling pathways in 403H and 403L, respectively. Mass spectrometry-based targeted metabolomics and hyperpolarized (HP) 1-13C pyruvate in-cell NMR analyses demonstrated significant alterations in the TCA cycle and fatty acid metabolism. Citrate, glutamine, and 2-HG levels were significantly higher in 403H. To our knowledge, this is the first report describing the development of a matched pair of 3D patient-derived cell models representative of MT and temozolomide (TMZ)-induced hypermutator phenotype (HMP) in IDH-mutant glioma, providing insights into genetic and metabolic changes during MT/HMP. This novel in vitro model allows further investigation of the mechanisms of MT at the cellular level.


Asunto(s)
Neoplasias Encefálicas , Transformación Celular Neoplásica , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Glioma/genética , Glioma/patología , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/metabolismo , Animales
8.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39273177

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a universally lethal malignancy with increasing incidence. However, ICC patients receive limited benefits from current drugs; therefore, we must urgently explore new drugs for treating ICC. Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, can suppress cancer cell growth via numerous mechanisms and have therapeutic effects on liver-related diseases. However, the impact of quinolizidine alkaloids on intrahepatic cholangiocarcinoma has not been fully studied. In this article, the in vitro anti-ICC activities of six natural quinolizidine alkaloids were explored. Aloperine was the most potent antitumor compound among the tested quinolizidine alkaloids, and it preferentially inhibited RBE cells rather than HCCC-9810 cells. Mechanistically, aloperine can potentially decrease glutamate content by inhibiting the hydrolysis of glutamine, reducing D-2-hydroxyglutarate levels and, consequently, leading to preferential growth inhibition in isocitrate dehydrogenase (IDH)-mutant ICC cells. In addition, aloperine preferentially resensitizes RBE cells to 5-fluorouracil, AGI-5198 and olaparib. This article demonstrates that aloperine shows preferential antitumor effects in intrahepatic cholangiocarcinoma cells harboring the mutant IDH1 by decreasing D-2-hydroxyglutarate, suggesting that aloperine could be used as a lead compound or adjuvant chemotherapy drug to treat ICC harboring the mutant IDH.


Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Isocitrato Deshidrogenasa , Mutación , Piperidinas , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Piperidinas/farmacología , Antineoplásicos/farmacología , Quinolizidinas/farmacología , Proliferación Celular/efectos de los fármacos
9.
Egypt Heart J ; 76(1): 127, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276199

RESUMEN

BACKGROUND: This systematic review aims to determine the impact of isolated diastolic hypertension (IDH) on cardiovascular outcomes. METHODS: We searched only English language articles on PubMed and SCOPUS until July 31, 2023 to investigate the association between IDH and cardiovascular outcomes. RESULTS: This meta-analysis of 19 studies evaluated the impact of different hypertension diagnostic guidelines (ACC/AHA: American Heart Association/American College of Cardiology; JNC7: Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; NICE/ESC: National Institute for Health and Care Excellence/European Society of Cardiology) on hypertension-related outcomes. Studies had varying sample sizes (173 to 2,969,679 participants) and study designs. In cohort studies using JNC7 guidelines, IDH was linked to increased cardiovascular disease (CVD) risk (HR: 1.45, 95% CI 1.17, 1.74), CVD mortality (HR: 1.54, 95% CI 1.23, 1.84), and coronary heart disease (CHD) risk (HR: 1.65). In studies using ACC/AHA guidelines, associations with CVD risk and CVD mortality were weaker [HR: 1.16 (95% CI 1.06, 1.25) and 1.10 (95% CI 0.95, 1.25), respectively]. Subgroup analysis revealed differences in outcomes on the basis of age and sex. Cross-sectional studies did not show significant associations with JNC7 and ACC guidelines; NICE guidelines were not used in cross-sectional studies. CONCLUSION: IDH is associated with an increased risk of CVD. Higher diastolic blood pressure cutoffs were associated with higher cardiovascular risk. This association varied by study design and effect modification by sex and race influenced the association.

10.
Chin Clin Oncol ; 13(Suppl 1): AB014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295332

RESUMEN

BACKGROUND: The 2021 World Health Organization (WHO) classification has significantly enhanced the molecular diagnostics of diffuse gliomas, emphasizing the role of molecular features alongside histology. However, accurate classification remains challenging, particularly for high-grade gliomas, IDH-wildtype. DNA methylation profiling provides an unbiased diagnostic approach, offering valuable insights into tumor classification. Here, we present a case of a high-grade glioma, initially diagnosed as glioblastoma, IDH-wildtype based on histological and genetic analysis, but later reclassified as a diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (RTK2 subtype) through methylation profiling. CASE DESCRIPTION: A 7-year-old boy presenting with seizures was admitted to our hospital, where brain magnetic resonance imaging revealed a tumor in the right temporal lobe. Intraoperative histology indicated a high-grade glioma, prompting maximal resection. Diagnosis according to the 2021 WHO classification involved histological analysis, immunohistochemistry, testing for specific genetic alterations, and DNA methylation profiling. Histological and immunohistochemical assessment initially identified the tumor as a high-grade astrocytoma, IDH-wildtype. Specific genetic testing revealed IDH1-wildtype, IDH2-wildtype, and TERT promoter mutation, consistent with a diagnosis of glioblastoma, IDH-wildtype. However, methylation profiling yielded a classifier score of 0.99 for a diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (RTK2 subtype). CONCLUSIONS: Our case illustrated that conventional histological and genetic analysis classification can be reclassified according to the DNA methylation analysis, demonstrating that methylation profiling is useful to accurately classify high-grade gliomas, particularly those of the IDH-wildtype subtype.


Asunto(s)
Metilación de ADN , Glioma , Humanos , Masculino , Glioma/genética , Glioma/patología , Niño , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
11.
Chin Clin Oncol ; 13(Suppl 1): AB019, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295337

RESUMEN

BACKGROUND: Gliomas vary in prognosis with World Health Organization (WHO) grade. Low-grade gliomas can undergo malignant progression (MP), becoming aggressive high-grade tumors, worsening prognosis. This is prevalent in isocitrate dehydrogenase-mutant (IDH-mt) gliomas like astrocytoma and oligodendroglioma, but the mechanism of MP is still not fully understood. High-grade IDH-mt gliomas have been reported to exhibit TET-mediated DNA hydroxymethylation, which is suggested to potentially influence gene expression. We hypothesized that hydroxymethylation in specific regions could be implicated in triggering MP. METHODS: We collected glioma tumor samples over a decade, using WHO 2021 classification to study IDH-mt astrocytoma grade 2 progression to grades 3 or 4, indicating MP. Samples from five patients, demonstrating MP, were analyzed for DNA hydroxymethylation status across more than 850,000 genomic locations using the oxidative bisulfite process and Infinium EPIC methylation array. This was complemented by RNA sequencing for gene expression analysis and its correlation with hydroxymethylation, and motif-enrichment analysis to infer transcription factor involvement in hydroxymethylation-based gene regulation. Additionally, to delve into the fundamental causes of hydroxymethylation, we exposed an IDH-mt glioma cell line to hypoxic conditions and systematically explored the genomic locations where hydroxymethylation occurred. RESULTS: Our comprehensive analysis identified a significant overlap of hydroxymethylated genomic regions across samples during MP, with a notable enrichment in open sea and intergenic regions (P<0.001). These regions were significantly associated with cancer-related signalling pathways. Integration with RNA sequencing data revealed 91 genes with significant correlations between hydroxymethylation and gene expression, implying roles in cell cycle regulation and antineoplastic functions. Furthermore, motif-enrichment analysis suggested the potential regulatory role of KLF4 in these processes. The cell culture results revealed that a certain similarity exists between the hydroxymethylation patterns observed during MP and those in glioma cells cultured under hypoxic conditions. CONCLUSIONS: This study elucidates the importance of region-specific DNA hydroxymethylation in the MP of IDH-mt astrocytomas, suggesting its potential impact on gene expression relevant to cancer malignancy. Our findings propose a complex interplay between hydroxymethylation and gene regulation, which may offer new insights into the mechanisms driving glioma progression and highlight potential targets for therapeutic intervention.


Asunto(s)
Metilación de ADN , Glioma , Isocitrato Deshidrogenasa , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Mutación , Progresión de la Enfermedad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Masculino , Femenino
12.
Chin Clin Oncol ; 13(Suppl 1): AB066, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295384

RESUMEN

BACKGROUND: Glioma, the most common brain tumor, poses significant challenges in patient care and economic burden. Clinicians often struggle with management strategies, especially under the 2021 World Health Organization (WHO) central nervous system (CNS) classification emphasizing molecular diagnosis. Isocitrate dehydrogenase (IDH) mutation status is crucial in glioma management. However, many facilities lack the capability for comprehensive molecular tests, and not all patients are candidates for invasive biopsies. MRI offers a non-invasive method to evaluate glioma characteristics. The Visually Accessible Rembrandt Images (VASARI) MRI feature set provides a systematic approach to analyzing brain glioma. This study examines the association of VASARI features with IDH mutation status and their predictive capability. METHODS: This study included 105 glioma patients treated between 2017 and 2022 who had not undergone surgery, chemotherapy, or radiotherapy. Brain MRIs were assessed using VASARI MRI features by two blinded radiologists. Pathological and molecular examinations were conducted per the 2021 WHO CNS tumor classification. IDH mutations were assessed using polymerase chain reaction (PCR) followed by DNA sequencing. Chi-squared analysis identified VASARI features significantly associated with IDH mutation status. A random forest model predicted IDH mutation status using these features. RESULTS: Brain MRI assessments using VASARI terminology showed good inter-observer agreement (kappa =0.714-0.831) and excellent intra-observer agreement (kappa =0.910). Thirteen VASARI features were significantly associated with IDH mutation status. The prediction model based on VASARI MRI features achieved an area under the curve (AUC) of 0.97, with 93.75% sensitivity, 75% specificity, and 84.38% accuracy on test data. CONCLUSIONS: The VASARI MRI feature set is a reliable method for evaluating glioma patients and is feasible for routine radiological practice. Several VASARI features significantly associate with IDH mutation status, aiding glioma patient management. The IDH mutation prediction model based on VASARI features performs excellently and warrants further validation before routine implementation.


Asunto(s)
Glioma , Isocitrato Deshidrogenasa , Imagen por Resonancia Magnética , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Neoplasias Encefálicas/genética , Anciano
13.
Chin Clin Oncol ; 13(Suppl 1): AB003, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295416

RESUMEN

BACKGROUND: We are primarily investigating the prognostic role of cell-cycle-dependent kinase inhibitor (CDKN)-2A homozygous deletion in central nervous system (CNS) World Health Organization (WHO) grade 4 gliomas. Additionally, traditional prognostic factors for grade 4 gliomas will be examined, and our results will be validated. METHODS: We conducted a retrospective analysis of glioma cohorts in our institute. Medical records were reviewed for 142 glioblastoma patients for 15 years, and pathological slides were examined again for the updated diagnosis according to the 2021 WHO classification of CNS tumors. The isocitrate dehydrase (IDH) mutation and CDKN2A deletion were examined by next generation sequencing (NGS) analysis using ONCO accuPanel®. Traditional prognostic factors including age, WHO performance status, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation were examined. RESULTS: After the exclusion of 6 patients with poor status of pathologic samples, 136 glioblastoma that were diagnosed by previous WHO criteria were changed into 29 (21.3%) astrocytoma, IDH-mutant, CNS WHO grade 4 and 107 (78.7%) glioblastoma, IDH-wildtype, CNS WHO grade 4. Among them, 61 patients (56.0%) had CDKN2A deletion. Group A with IDH-wildtype and CDKN2A deletion had a mean overall survival (OS) of 15.70 months [95% confident interval (CI): 13.86-17.54], group B with IDH-mutant and CDKN2A deletion had a mean OS of 19.37 months (95% CI: 13.43-25.30), group C with IDH-wildtype and intact CDKN2A had a mean OS of 22.63 months (95% CI: 20.10-25.17), and group D with IDH-mutant and intact CDKN2A had a mean OS of 33.38 months (95% CI: 29.35-37.40). Multifactor analysis showed following factors were independently associated with OS: age [≥50 vs. <50 years; hazard ratio (HR) 4.642], extent of resection (gross total resection vs. others; HR 5.523), WHO performance (0, 1 vs. 2; HR 5.007), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.075), IDH mutation (mutant vs. wildtype; HR 6.358), and CDKN2A deletion (absence vs. presence; HR 13.452). CONCLUSIONS: The presenting study suggests that CDKN2A deletion should play a powerful prognostic role in CNS WHO grade 4 gliomas as well as low-grade glioma. Even if CNS WHO grade 4 gliomas had mutant IDH, they can have poor clinical outcomes due to CDKN2A deletion.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Glioma/genética , Glioma/patología , Masculino , Femenino , Persona de Mediana Edad , Isocitrato Deshidrogenasa/genética , Estudios Retrospectivos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Adulto , Organización Mundial de la Salud , Clasificación del Tumor , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Homocigoto , Eliminación de Gen , Adulto Joven
14.
Heliyon ; 10(17): e37344, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296238

RESUMEN

Background: Cholangiocarcinoma (CCA) is the second most common primary malignancy of the liver and is associated with poor prognosis. Despite the emerging role of glycine amidinotransferase (GATM) in cancer development, its function in CCA remains elusive. This study investigated the biological significance and molecular mechanisms of GATM in CCA. Method: GATM expression was measured using immunohistochemistry and western blotting. Cell proliferation, migration, and invasion were assessed through CCK-8, EdU, clone formation, wound healing, and Transwell assays. Rescue experiments were performed to determine whether the JNK/c-Jun pathway is involved in GATM-mediated CCA development. Immunoprecipitation and mass spectrometry were performed to screen for proteins that interact with GATM. The role of GATM in vivo was investigated according to the xenograft experiment. Result: GATM expression was downregulated in CCA tissues and cells (p < 0.05) and had a significant suppressive effect on CCA cell proliferation, migration, and invasion in vitro as well as on tumour growth in vivo (p < 0.05); conversely, GATM knockdown promoted these phenotypes (p < 0.05). Notably, GATM inhibited the JNK/c-Jun pathway, and JNK activation abrogated GATM's antitumor effects (p < 0.05). Isocitrate dehydrogenase 1 (IDH1) interacts with GATM, and IDH1 knockdown significantly attenuated GATM protein degradation. Overexpression of IDH1 restored the biological function of CCA by reversing the inhibition of JNK/c-Jun pathway phosphorylation by GATM (p < 0.05). Conclusion: GATM acts as a tumour suppressor in CCA by regulating the phosphorylation of the JNK/c-Jun pathway. IDH1 interacted with GATM to regulate CCA progression.

15.
J Hematol Oncol ; 17(1): 70, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160538

RESUMEN

BACKGROUND: Deletions and partial losses of chromosome 7 (chr7) are frequent in acute myeloid leukemia (AML) and are linked to dismal outcome. However, the genomic landscape and prognostic impact of concomitant genetic aberrations remain incompletely understood. METHODS: To discover genetic lesions in adult AML patients with aberrations of chromosome 7 [abn(7)], 60 paired diagnostic/remission samples were investigated by whole-exome sequencing in the exploration cohort. Subsequently, a gene panel including 66 genes and a SNP backbone for copy-number variation detection was designed and applied to the remaining samples of the validation cohort. In total, 519 patients were investigated, of which 415 received intensive induction treatment, typically containing a combination of cytarabine and anthracyclines. RESULTS: In the exploration cohort, the most frequently mutated gene was TP53 (33%), followed by epigenetic regulators (DNMT3A, KMT2C, IDH2) and signaling genes (NRAS, PTPN11). Thirty percent of 519 patients harbored ≥ 1 mutation in genes located in commonly deleted regions of chr7-most frequently affecting KMT2C (16%) and EZH2 (10%). KMT2C mutations were often subclonal and enriched in patients with del(7q), de novo or core-binding factor AML (45%). Cancer cell fraction analysis and reconstruction of mutation acquisition identified TP53 mutations as mainly disease-initiating events, while del(7q) or -7 appeared as subclonal events in one-third of cases. Multivariable analysis identified five genetic lesions with significant prognostic impact in intensively treated AML patients with abn(7). Mutations in TP53 and PTPN11 (11%) showed the strongest association with worse overall survival (OS, TP53: hazard ratio [HR], 2.53 [95% CI 1.66-3.86]; P < 0.001; PTPN11: HR, 2.24 [95% CI 1.56-3.22]; P < 0.001) and relapse-free survival (RFS, TP53: HR, 2.3 [95% CI 1.25-4.26]; P = 0.008; PTPN11: HR, 2.32 [95% CI 1.33-4.04]; P = 0.003). By contrast, IDH2-mutated patients (9%) displayed prolonged OS (HR, 0.51 [95% CI 0.30-0.88]; P = 0.0015) and durable responses (RFS: HR, 0.5 [95% CI 0.26-0.96]; P = 0.036). CONCLUSION: This work unraveled formerly underestimated genetic lesions and provides a comprehensive overview of the spectrum of recurrent gene mutations and their clinical relevance in AML with abn(7). KMT2C mutations are among the most frequent gene mutations in this heterogeneous AML subgroup and warrant further functional investigation.


Asunto(s)
Cromosomas Humanos Par 7 , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Adulto , Cromosomas Humanos Par 7/genética , Anciano , Mutación , Estudios de Cohortes , Adulto Joven , Aberraciones Cromosómicas , Pronóstico , Anciano de 80 o más Años , Adolescente , Secuenciación del Exoma , Variaciones en el Número de Copia de ADN , Proteína p53 Supresora de Tumor/genética , Genómica/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
16.
J Magn Reson Imaging ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165049

RESUMEN

BACKGROUND: Gliomas are highly invasive brain tumors that evade accurate geographic assessment by conventional MRI due to microscopic invasion along white matter (WM) tracts. Advanced diffusion MRI techniques are needed to assess occult WM involvement. PURPOSE: To evaluate peak width of skeletonized mean diffusivity (PSMD) and peak width of skeletonized free water (PSFW), and axonal water fraction (AWF) for assessing glioma-induced alterations in normal-appearing WM and their relationship with isocitrate dehydrogenase 1 (IDH1) mutation. STUDY TYPE: Retrospective. POPULATION: One hundred five glioma patients (46 ± 13 years), 53 healthy controls (HCs) (46 ± 9 years). FIELD STRENGTH/SEQUENCE: 3.0 T, T1WI, T1-CE, T2WI, T2FLAIR, and DKI. ASSESSMENT: PSMD and PSFW were compared between lesion and contralateral sides in glioma patients and between patients and HCs. The associations between these metrics and clinical variables, including IDH1 mutation, was assessed. Corpus callosum (CC) injury, quantified by the AWF, was evaluated for its mediated effect of IDH1 mutation on contralesional PSMD and PSFW. STATISTICAL TESTS: Paired-t tests, ANCOVA, univariate and multivariate linear regression, and mediation analysis with significance set at P < 0.05. RESULTS: Contralateral PSMD and PSFW were significantly higher in left-sided gliomas (PSMD: 0.206 ± 0.027 vs. 0.193 ± 0.023; PSFW: 0.119 ± 0.019 vs. 0.106 ± 0.020) than in HCs, with similar increases in right-sided gliomas (PSMD: 0.219 ± 0.036 vs. 0.195 ± 0.023; PSFW: 0.129 ± 0.031 vs. 0.109 ± 0.020). IDH1 wild-type gliomas were associated with higher contralateral PSMD and PSFW (ß = -0.302 and -0.412). AWF of CC mediated the impact of IDH1 mutations on contralesional PSMD and PSFW (mediated proportion: 42.7% and 53.7%). DATA CONCLUSION: PSMD and PSFW are effective biomarkers for assessing WM integrity in gliomas, significantly associated with IDH1 mutation status. AWF of CC mediates the relationship between IDH1 mutation and contralesional PSMD and PSFW. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

17.
Front Oncol ; 14: 1409760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139289

RESUMEN

Objectives: To assess the diagnostic accuracy of machine learning (ML)-based radiomics for predicting isocitrate dehydrogenase (IDH) mutations in patients with glioma. Methods: A systematic search of PubMed, Web of Science, Embase, and the Cochrane Library from inception to 1 September 2023, was conducted to collect all articles investigating the diagnostic performance of ML for the prediction of IDH mutations in gliomas. Two reviewers independently screened all papers for eligibility. Methodological quality and risk of bias were assessed using the METhodological RadiomICs Score and Quality Assessment of Diagnostic Accuracy Studies-2, respectively. The pooled sensitivity, specificity, and 95% confidence intervals were calculated, and the area under the receiver operating characteristic curve (AUC) was obtained. Results: In total, 14 original articles assessing 1740 patients with gliomas were included. The AUC of ML for predicting IDH mutation was 0.90 (0.87-0.92). The pooled sensitivity, specificity, and diagnostic odds ratio were 0.83 (0.71-0.90), 0.84 (0.74-0.90), and 25 (12,50) respectively. In subgroup analyses, modeling methods, glioma grade, and the combination of magnetic resonance imaging and clinical features affected the diagnostic performance in predicting IDH mutations in gliomas. Conclusion: ML-based radiomics demonstrated excellent diagnostic performance in predicting IDH mutations in gliomas. Factors influencing the diagnosis included the modeling methods employed, glioma grade, and whether the model incorporated clinical features. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#myprospero, PROSPERO registry (CRD 42023395444).

18.
Cureus ; 16(7): e63873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39100020

RESUMEN

OBJECTIVES: This study aimed to leverage Visually AcceSAble Rembrandt Images (VASARI) radiological features, extracted from magnetic resonance imaging (MRI) scans, and machine-learning techniques to predict glioma grade, isocitrate dehydrogenase (IDH) mutation status, and O6-methylguanine-DNA methyltransferase (MGMT) methylation. METHODOLOGY: A retrospective evaluation was undertaken, analyzing MRI and molecular data from 107 glioma patients treated at a tertiary hospital. Patients underwent MRI scans using established protocols and were evaluated based on VASARI criteria. Tissue samples were assessed for glioma grade and underwent molecular testing for IDH mutations and MGMT methylation. Four machine learning models, namely, Random Forest, Elastic-Net, multivariate adaptive regression spline (MARS), and eXtreme Gradient Boosting (XGBoost), were trained on 27 VASARI features using fivefold internal cross-validation. The models' predictive performances were assessed using the area under the curve (AUC), sensitivity, and specificity. RESULTS: For glioma grade prediction, XGBoost exhibited the highest AUC (0.978), sensitivity (0.879), and specificity (0.964), with f6 (proportion of non-enhancing) and f12 (definition of enhancing margin) as the most important predictors. In predicting IDH mutation status, XGBoost achieved an AUC of 0.806, sensitivity of 0.364, and specificity of 0.880, with f1 (tumor location), f12, and f30 (perpendicular diameter to f29) as primary predictors. For MGMT methylation, XGBoost displayed an AUC of 0.580, sensitivity of 0.372, and specificity of 0.759, highlighting f29 (longest diameter) as the key predictor. CONCLUSIONS: This study underscores the robust potential of combining VASARI radiological features with machine learning models in predicting glioma grade, IDH mutation status, and MGMT methylation. The best and most balanced performance was achieved using the XGBoost model. While the prediction of glioma grade showed promising results, the sensitivity in discerning IDH mutations and MGMT methylation still leaves room for improvement. Follow-up studies with larger datasets and more advanced artificial intelligence techniques can further refine our understanding and management of gliomas.

19.
J Neurooncol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192067

RESUMEN

PURPOSE: Reprogramming of amino acid metabolism is relevant for initiating and fueling tumor formation and growth. Therefore, there has been growing interest in anticancer therapies targeting amino acid metabolism. While developing personalized therapeutic approaches to glioma, in vivo proton magnetic resonance spectroscopy (MRS) is a valuable tool for non-invasive monitoring of tumor metabolism. Here, we evaluated MRS-detected brain amino acids and myo-inositol as potential diagnostic and prognostic biomarkers in glioma. METHOD: We measured alanine, glycine, glutamate, glutamine, and myo-inositol in 38 patients with MRI-suspected glioma using short and long echo-time single-voxel PRESS MRS sequences. The detectability of alanine, glycine, and myo-inositol and the (glutamate + glutamine)/total creatine ratio were evaluated against the patients' IDH mutation status, CNS WHO grade, and overall survival. RESULTS: While the detection of alanine and non-detection of myo-inositol significantly correlated with IDH wildtype (p = 0.0008, p = 0.007, respectively) and WHO grade 4 (p = 0.01, p = 0.04, respectively), glycine detection was not significantly associated with either. The ratio of (glutamate + glutamine)/total creatine was significantly higher in WHO grade 4 than in 2 and 3. We found that the overall survival was significantly shorter in glioma patients with alanine detection (p = 0.00002). CONCLUSION: Focusing on amino acids in MRS can improve its diagnostic and prognostic value in glioma. Alanine, which is visible at long TE even in the presence of lipids, could be a relevant indicator for overall survival.

20.
Cancer Med ; 13(16): e70111, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39189437

RESUMEN

INTRODUCTION: Peritumoral brain edema (PTBE) has been widely reported with many brain tumors, especially with glioma. Since the blood-brain barrier (BBB) is essential for maintaining minimal permeability, any alteration in the interaction of BBB components, specifically in astrocytes and tight junctions (TJ), can result in disrupting the homeostasis of the BBB and making it severely leaky, which subsequently generates edema. OBJECTIVE: This study aimed to evaluate the functional gliovascular unit of the BBB by examining changes in the expression of claudin (CLDN) genes and the expression of transient receptor potential (TRP) membrane channels, additionally to define the correlation between their expressions. The evaluation was conducted using in vitro spheroid swelling models and tumor samples from glioma patients with PTBE. RESULTS: The results of the spheroid model showed that the genes TRPC3, TRPC4, TRPC5, and TRPV1 were upregulated in glioma cells either wild-type isocitrate dehydrogenase 1 (IDH1) or the IDH1 R132H mutant, with or without NaCl treatment. Furthermore, TRP genes appeared to adversely correlate with the up regulation of CLDN1, CLDN3, and CLDN5 genes. Besides, the upregulation of TRPC1 and TRPC4 in IDH1mt-R132H glioma cells. On the other hand, the correlation analysis revealed different correlations between different proteins in PTBE. CLDN1 exhibits a slight positive correlation with CLDN3. Similarly, TRPV1 displays a slight positive correlation with TRPC1. In contrast, TRPC4 shows a slight negative correlation with TRPC5. On the other hand, TRPC3 demonstrates a slight positive correlation with TRPC5, while the non-PTBE analysis highlights a moderate positive correlation between CLDN1 and TRPM4 while CLDN3 exhibits a moderate negative correlation with TRPC4. Additionally, CLDN5 demonstrates a slight negative correlation with TRPC4 but a moderate positive correlation with TRPC3. Furthermore, TRPC1 have a slight negative correlation with TRPV1, TRPC3 exhibiting a slight positive correlation with TRPC4, and TRPV1 showing a slight negative correlation with TRPC5. CONCLUSION: As a conclusion, the current study provided evidence of a slight negative correlation between TRPs and CLDN gene expression in PTBE patients and confirmatory results with some of the genes in cell model of edema.


Asunto(s)
Edema Encefálico , Neoplasias Encefálicas , Claudina-5 , Glioma , Humanos , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patología , Glioma/genética , Glioma/metabolismo , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Claudina-5/genética , Claudina-5/metabolismo , Regulación Neoplásica de la Expresión Génica , Claudina-3/genética , Claudina-3/metabolismo , Barrera Hematoencefálica/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Claudina-1/genética , Claudina-1/metabolismo , Claudinas/genética , Claudinas/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA