Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20463, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39242672

RESUMEN

Sensory experiences and learning induce long-lasting changes in both excitatory and inhibitory synapses, thereby providing a crucial substrate for memory. However, the co-tuning of excitatory long-term potentiation (eLTP) or depression (eLTD) with the simultaneous changes at inhibitory synapses (iLTP/iLTD) remains unclear. Herein, we investigated the co-expression of NMDA-induced synaptic plasticity at excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells (PCs) using a combination of electrophysiological, optogenetic, and pharmacological approaches. We found that inhibitory inputs from somatostatin (SST) and parvalbumin (PV)-positive interneurons onto CA1 PCs display input-specific long-term plastic changes following transient NMDA receptor activation. Notably, synapses from SST-positive interneurons consistently exhibited iLTP, irrespective of the direction of excitatory plasticity, whereas synapses from PV-positive interneurons predominantly showed iLTP concurrent with eLTP, rather than eLTD. As neuroplasticity is known to depend on the extracellular matrix, we tested the impact of metalloproteinases (MMP) inhibition. MMP3 blockade interfered with GABAergic plasticity for all inhibitory inputs, whereas MMP9 inhibition selectively blocked eLTP and iLTP in SST-CA1PC synapses co-occurring with eLTP but not eLTD. These findings demonstrate the dissociation of excitatory and inhibitory plasticity co-expression. We propose that these mechanisms of plasticity co-expression may be involved in maintaining excitation-inhibition balance and modulating neuronal integration modes.


Asunto(s)
Interneuronas , Plasticidad Neuronal , Células Piramidales , Animales , Plasticidad Neuronal/fisiología , Interneuronas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Hipocampo/metabolismo , Hipocampo/fisiología , Parvalbúminas/metabolismo , Masculino , Ratones , Somatostatina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Potenciación a Largo Plazo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108295

RESUMEN

Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.


Asunto(s)
Potenciación a Largo Plazo , Plasticidad Neuronal , Ratas , Animales , Potenciación a Largo Plazo/fisiología , Ratas Sprague-Dawley , Plasticidad Neuronal/fisiología , Fenómenos Electrofisiológicos , Aprendizaje , Sinapsis/fisiología , Mamíferos
3.
J Neurosci ; 42(30): 5830-5842, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35701161

RESUMEN

For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by ß1 or ß3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of ß3 integrin with fibrinogen induced a stable depression, whereas inhibition of ß1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of ß1 or ß3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of ß3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of ß1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.


Asunto(s)
Integrinas , Transmisión Sináptica , Animales , Hipocampo/metabolismo , Integrinas/metabolismo , Masculino , Ratones , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
4.
Neuroscience ; 467: 39-46, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34033868

RESUMEN

It is known that besides synaptic inhibition, there is a persistent component of inhibitory drive mediated by tonic currents which is believed to mediate majority of the total inhibitory charge in hippocampal neurons. Tonic currents, depending on cell types, can be mediated by a variety of GABAA receptor (GABAAR) subtypes but in pyramidal neurons, α5-subunit containing receptors were found to be predominant. Importantly, α5-GABAARs were implicated in both inhibitory and excitatory synaptic plasticity as well as in a variety of cognitive tasks. In the present study, we asked whether the protocol that evokes NMDAR-dependent GABAergic inhibitory long-term potentiation (iLTP) also induces the plasticity of tonic inhibition in hippocampal pyramidal neurons. Our whole-cell patch-clamp recordings revealed that the induction of this type of iLTP is associated with a marked increase in tonic current. By using the specific inverse agonist of α5-containing GABAARs (L-655,709) we provide evidence that this plastic change in tonic current is correlated with an increased proportion of this type of GABAARs. On the contrary, the iLTP induction did not affect the tonic current potentiated by THIP, indicating that the pool of δ subunit-containing GABAARs receptors remains unaffected. We conclude that the α5-GABAARs-dependent plasticity of tonic inhibition is a novel dimension of the neuroplasticity of the inhibitory drive in the hippocampal principal neurons. Overall, α5-containing GABAARs emerge as key players in a variety of plasticity mechanisms operating over a large span of time and spatial scales.


Asunto(s)
Hipocampo , Receptores de GABA-A , Hipocampo/metabolismo , Plasticidad Neuronal , Células Piramidales/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
5.
Cell Mol Life Sci ; 78(5): 2279-2298, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32959071

RESUMEN

Learning and memory are known to depend on synaptic plasticity. Whereas the involvement of plastic changes at excitatory synapses is well established, plasticity mechanisms at inhibitory synapses only start to be discovered. Extracellular proteolysis is known to be a key factor in glutamatergic plasticity but nothing is known about its role at GABAergic synapses. We reveal that pharmacological inhibition of MMP3 activity or genetic knockout of the Mmp3 gene abolishes induction of postsynaptic iLTP. Moreover, the application of exogenous active MMP3 mimics major iLTP manifestations: increased mIPSCs amplitude, enlargement of synaptic gephyrin clusters, and a decrease in the diffusion coefficient of synaptic GABAA receptors that favors their entrapment within the synapse. Finally, we found that MMP3 deficient mice show faster spatial learning in Morris water maze and enhanced contextual fear conditioning. We conclude that MMP3 plays a key role in iLTP mechanisms and in the behaviors that presumably in part depend on GABAergic plasticity.


Asunto(s)
Hipocampo/fisiología , Metaloproteinasa 3 de la Matriz/metabolismo , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje Espacial/fisiología , Sinapsis/fisiología , Animales , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Metaloproteinasa 3 de la Matriz/genética , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/farmacología , Inhibición Neural/genética , Plasticidad Neuronal/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sinapsis/genética
6.
Int J Mol Sci ; 18(7)2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28678158

RESUMEN

Niemann-Pick type C disease (NPCD) is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol within the late endo-lysosomal compartment of cells. In the central nervous system, hypoxic insults could result in low-density lipoprotein (LDL) oxidation and Lectin-like oxidized LDL receptor-1 (LOX-1) induction, leading to a pathological hippocampal response, namely, ischemic long-term potentiation (i-LTP). These events may correlate with the progressive neural loss observed in NPCD. To test these hypotheses, hippocampal slices from Wild Type (WT) and NPC1-/- mice were prepared, and field potential in the CA1 region was analyzed during transient oxygen/glucose deprivation (OGD). Moreover, LOX-1 expression was evaluated by RT-qPCR, immunocytochemical, and Western blot analyses before and after an anoxic episode. Our results demonstrate the development of a precocious i-LTP in NPC1-/- mice during OGD application. We also observed a higher expression of LOX-1 transcript and protein in NPC1-/- mice with respect to WT mice; after anoxic damage to LOX-1 expression, a further increase in both NPC1-/- and WT mice was observed, although the protein expression seems to be delayed, suggesting a different kinetic of induction. These data clearly suggest an elevated susceptibility to neurodegeneration in NPC1-/- mice due to oxidative stress. The observed up-regulation of LOX-1 in the hippocampus of NPC1-/- mice may also open a new scenario in which new biomarkers can be identified.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/fisiopatología , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/fisiopatología , Potenciación a Largo Plazo , Receptores Depuradores de Clase E/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Glucosa/metabolismo , Hipocampo/irrigación sanguínea , Hipoxia-Isquemia Encefálica/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo C/etiología , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Estrés Oxidativo , Oxígeno/metabolismo , Receptores Depuradores de Clase E/metabolismo
7.
Neural Regen Res ; 10(10): 1537-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26692832

RESUMEN

The precise role of neural plasticity under pathological conditions remains not well understood. It appears to be well accepted, however, that changes in the ability of neurons to express plasticity accompany neurological diseases. Here, we discuss recent experimental evidence, which suggests that synaptic plasticity induced by a pathological stimulus, i.e., ischemic long-term-potentiation (iLTP) of excitatory synapses, could play an important role for post-stroke recovery by influencing the post-lesional reorganization of surviving neuronal networks.

8.
Front Cell Neurosci ; 9: 262, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26217186
9.
J Biomed Res ; 29(3): 241-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26060448

RESUMEN

Post-ischemic long-term potentiation (i-LTP) is a pathological form of plasticity that was observed in glutamate receptor-mediated neurotransmission after stroke and may exert a detrimental effect via facilitating excitotoxic damage. The mechanism underlying i-LTP, however, remains less understood. By employing electrophysiological recording and immunofluorescence assay on hippocampal slices and cultured neurons, we found that protein kinase Mζ (PKMζ), an atypical protein kinase C isoform, was involved in enhancing aminomethyl phosphonic acid (AMPA) receptor (AMPAR) expression after i-LTP induction. PKMζ knockdown attenuated postsynaptic expression of AMPA receptors and disrupted i-LTP. Consistently, we observed less neuronal death of cultured hippocampal cells with PKMζ knockdown. Meanwhile, these findings indicate that PKMζ plays an important role in i-LTP by regulating postsynaptic expression of AMPA receptors. This work adds new knowledge to the mechanism of i-LTP, and thus is helpful to find the potential target for clinical therapy of ischemic stroke.

10.
J Neurochem ; 133(3): 397-408, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25418841

RESUMEN

The exact effect of glycine pre-treatment on brain ischemic tolerance (IT) remains quite controversial. The objective of this study was to investigate the potential effects of glycine on IT. We used rat models of both in vitro ischemia (oxygen and glucose deprivation) and in vivo ischemia (transient middle cerebral artery occlusion). Low doses of glycine (L-Gly) significantly decreased hippocampal ischemic LTP (i-LTP), infarct volume, and neurological deficit scores which were administered before ischemia was induced in rats, whereas high doses of glycine exerted deteriorative effects under the same condition. These findings suggested that exogenous glycine may induce IT in a dose-dependent manner. Furthermore, L-Gly-dependent neuronal protection was inversed by L689, a selective NMDAR glycine site antagonist both in vitro (abolished i-LTP depression) and in vivo (increased infarct size reduction), but not glycine receptor (GlyR) inhibitor strychnine. Importantly, L-Gly-induced IT was achieved by NR2A-dependent cAMP-response element binding protein phosphorylation. These data imply that glycine pre-treatment may represent a novel strategy for inducing IT based on synaptic NMDAR-dependent neuronal transmission. A model of glycine induced dose-dependent bidirectional regulations in ischemic tolerance. (a) Under low dose of Gly pre-treatment, glycine induces NMDAR potentiation and CREB-dependent neuroprotection through the NMDAR co-agonist binding site. (b) Under high dose of Gly pre-treatment, the excessive glycine in synaptic cleft can activate neighboring extrasynaptic sites and combine to the GlyRs. Then, the deteriorative effects would be triggered after NMDAR endocytosis and synaptic depression. AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CREB, cAMP response element-binding protein; Gly, glycine; GlyR, glycine receptor; GlyT1, gycine transportor 1; NMDAR, N-methyl-d-aspartate receptor.


Asunto(s)
Isquemia Encefálica/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glicina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Glicina/uso terapéutico , Masculino , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas
11.
Neuroscience ; 281: 135-46, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25264032

RESUMEN

Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Enfermedades del Sistema Nervioso/metabolismo
12.
Synapse ; 67(12): 865-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23813456

RESUMEN

Our previous and other studies have confirmed that a selective M1 and M3 receptor antagonist, Penehyclidine hydrochloride (PHC), has neuroprotection activity in cerebral ischemia. However, the precise mechanisms of protection of PHC are still elusive. In this study we analyzed PHC-mediated neuroprotection on a model of brain ischemia (oxygen and glucose deprivation), named postischemic LTP (i-LTP). We found that the activation of NMDA receptor was required for the induction of i-LTP. Compared with scopolamine, PHC could prevent it due to selectively blocking M1 receptor, not M2 receptor, to decrease NMDAR activation. Our findings further showed that the inhibition of SK2 channels occluded the prevention of PHC on NMDAR activation. Furthermore, we confirmed that PHC exerted its roles through directly disinhibition of SK2 channels by blocking M1 receptor and subsequent restricting PKC activation. Moreover, our studies further revealed the critical roles of SK2 channels in i-LTP. Thus, the mechanisms of PHC in brain protection may be involved in suppression of NMDAR by regulation of SK2 channels. Our results obtained in effects of PHC on i-LTP further provided a better understanding of the therapy strategy during stroke and identified potential therapeutic targets to prevent development of ischemia.


Asunto(s)
Isquemia Encefálica/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Quinuclidinas/farmacología , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M3/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Bloqueadores de los Canales de Potasio/farmacología , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Escopolamina/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA