Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Infect Dis ; 230(Supplement_2): S165-S172, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255396

RESUMEN

BACKGROUND: Toxoplasma gondii infection of Alzheimer's disease model mice decreases amyloid ß plaques. We aimed to determine if there is a brain regional difference in amyloid ß reduction in the brains of T. gondii-infected compared to control mice. METHOD: Three-month-old 5xFAD (AD model) mice were injected with T. gondii or with phosphate-buffered saline as a control. Intact brains were harvested at 6 weeks postinfection, optically cleared using iDISCO+, and brain-wide amyloid burden was visualized using volumetric light-sheet imaging. Amyloid signal was quantified across each brain and computationally mapped to the Allen Institute Brain Reference Atlas to determine amyloid density in each region. RESULTS: A brain-wide analysis of amyloid in control and T. gondii-infected 5xFAD mice revealed that T. gondii infection decreased amyloid burden in the brain globally as well as in the cortex and hippocampus, and many daughter regions. Daughter regions that showed reduced amyloid burden included the prelimbic cortex, visual cortex, and retrosplenial cortex. The olfactory tubercle, a region known to have increased monocytes following T. gondii infection, also showed reduced amyloid after infection. CONCLUSIONS: T. gondii infection of AD mice reduces amyloid burden in a brain region-specific manner that overlaps with known regions of T. gondii infection and peripheral immune cell infiltration.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Modelos Animales de Enfermedad , Ratones Transgénicos , Toxoplasma , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/parasitología , Enfermedad de Alzheimer/patología , Ratones , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Toxoplasmosis/metabolismo , Femenino
2.
Addict Biol ; 29(9): e13434, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39256902

RESUMEN

Frontloading is an alcohol drinking pattern where intake is skewed towards the onset of access. This study aimed to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female, 31 male) mice that underwent 8 days of binge drinking using drinking-in-the-dark (DID). On Days 1-7 mice received 20% (v/v) alcohol or water for 2 h. Intake was measured in 1-min bins using volumetric sippers. On Day 8 mice were perfused 80 min into the DID session and brains were extracted. Brains were processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For network analyses, Day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a change-point analysis. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (three modules in both frontloaders and non-frontloaders) as compared to water (seven modules). In females, an opposite effect was observed. Alcohol access (nine modules for frontloaders) increased modularity as compared to water (five modules). Further, different brain regions served as hubs in frontloaders as compared to control groups. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females and we identify several brain-wide signatures of frontloading.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Encéfalo , Ratones Endogámicos C57BL , Caracteres Sexuales , Animales , Femenino , Masculino , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Ratones , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Etanol/farmacología , Factores Sexuales
3.
Bio Protoc ; 14(5): e4948, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38464943

RESUMEN

Recent advancements in tissue-clearing techniques and volumetric imaging have greatly facilitated visualization and quantification of biomolecules, organelles, and cells in intact organs or even entire organisms. Generally, there are two types of clearing methods: hydrophobic and hydrophilic (i.e., clearing with organic or aqueous solvents, respectively). The popular iDISCO approach and its modifications are hydrophobic methods that involve dehydration, delipidation, decolorization (optional), decalcification (optional), and refractive-index (RI) matching steps. Cleared samples are often stored for a relatively long period of time and imaged repeatedly. However, cleared tissues can become opaque over time, which prevents accurate reimaging. We reasoned that the resurgent haziness is likely due to rehydration, residual lipids, and uneven RI deep inside those tissue samples. For rescue, we have developed a simple procedure based on iDISCO. Beginning with a methanol dehydration, samples are delipidated using dichloromethane, followed by RI matching with dibenzyl ether (DBE). This simple method effectively re-clears mouse brains that have turned opaque during months of storage, allowing the user to effectively image immunolabeled samples over longer periods of time. Key features • This simple protocol rescues previously cleared tissue that has turned opaque. • The method does not cause detectable loss of immunofluorescence from previously stained samples. Graphical overview.

4.
Methods Mol Biol ; 2761: 589-597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427263

RESUMEN

Immunolabeling-enabled imaging of solvent-cleared organs (iDISCO) (Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M, Cell 159:896-910, 2014) aims to match the refractive index (RI) of tissue to the surrounding medium, thereby facilitating three-dimensional (3D) imaging and quantification of cellular points and tissue structures. Once cleared, transparent tissue samples allow for rapid imaging with no mechanical sectioning. This imaging technology enables us to visualize brain tissue in situ and quantify the morphology and extent of glial cell branches or neuronal processes extending from the epicenter of a traumatic brain injury (TBI). In this way, we can more accurately assess and quantify the damaging consequences of TBI not only in the impact region but also in the extended pericontusional regions.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microscopía , Ratones , Animales , Imagenología Tridimensional/métodos , Solventes , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo
5.
Elife ; 122024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381037

RESUMEN

Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits. These circuits include known regulators of bonding, such as the bed nucleus of the stria terminalis, paraventricular hypothalamus, ventral pallidum, and prefrontal cortex. They also include brain regions previously unknown to shape bonding, such as ventromedial hypothalamus, medial preoptic area, and the medial amygdala, but that play essential roles in bonding-relevant processes, such as sexual behavior, social reward, and territorial aggression. Contrary to some hypotheses, we found that circuits active during mating and bonding were largely sexually monomorphic. Moreover, c-Fos induction across regions was strikingly consistent between members of a pair, with activity best predicted by rates of ejaculation. A novel cluster of regions centered in the amygdala remained coordinated after bonds had formed, suggesting novel substrates for bond maintenance. Our tools and results provide an unprecedented resource for elucidating the networks that translate sexual experience into an enduring bond.


Asunto(s)
Prosencéfalo Basal , Pradera , Masculino , Humanos , Animales , Mapeo Encefálico , Arvicolinae , Proteínas Proto-Oncogénicas c-fos
6.
J Comp Neurol ; 532(1): e25582, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289188

RESUMEN

Bone and dental tissues are richly innervated by sensory and sympathetic neurons. However, the characterization of the morphology, molecular phenotype, and distribution of nerves that innervate hard tissue has so far mostly been limited to thin histological sections. This approach does not adequately capture dispersed neuronal projections due to the loss of important structural information during three-dimensional (3D) reconstruction. In this study, we modified the immunolabeling-enabled imaging of solvent-cleared organs (iDISCO/iDISCO+) clearing protocol to image high-resolution neuronal structures in whole femurs and mandibles collected from perfused C57Bl/6 mice. Axons and their nerve terminal endings were immunolabeled with antibodies directed against protein gene product 9.5 (pan-neuronal marker), calcitonin gene-related peptide (peptidergic nociceptor marker), or tyrosine hydroxylase (sympathetic neuron marker). Volume imaging was performed using light sheet fluorescence microscopy. We report high-quality immunolabeling of the axons and nerve terminal endings for both sensory and sympathetic neurons that innervate the mouse femur and mandible. Importantly, we are able to follow their projections through full 3D volumes, highlight how extensive their distribution is, and show regional differences in innervation patterns for different parts of each bone (and surrounding tissues). Mapping the distribution of sensory and sympathetic axons, and their nerve terminal endings, in different bony compartments may be important in further elucidating their roles in health and disease.


Asunto(s)
Axones , Neuronas , Animales , Ratones , Microscopía Fluorescente , Ratones Endogámicos C57BL , Terminaciones Nerviosas
7.
Methods Mol Biol ; 2713: 297-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639131

RESUMEN

The introduction of the light-sheet microscope has facilitated the analysis of complete tissues for the presence of all cells and their location in relation to their niche. This contributes to a better understanding of cellular locations and interactions in organs. In the last decade, many new and improved protocols have been published which are essential to improve staining and visualization of the immune-fluorescence within different tissues. In this article, we will discuss two main protocols we have used to visualize tissue-resident macrophages.


Asunto(s)
Imagenología Tridimensional , Macrófagos , Coloración y Etiquetado
8.
Cell ; 186(26): 5910-5924.e17, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38070509

RESUMEN

The evolution and development of the head have long captivated researchers due to the crucial role of the head as the gateway for sensory stimuli and the intricate structural complexity of the head. Although significant progress has been made in understanding head development in various vertebrate species, our knowledge of early human head ontogeny remains limited. Here, we used advanced whole-mount immunostaining and 3D imaging techniques to generate a comprehensive 3D cellular atlas of human head embryogenesis. We present detailed developmental series of diverse head tissues and cell types, including muscles, vasculature, cartilage, peripheral nerves, and exocrine glands. These datasets, accessible through a dedicated web interface, provide insights into human embryogenesis. We offer perspectives on the branching morphogenesis of human exocrine glands and unknown features of the development of neurovascular and skeletomuscular structures. These insights into human embryology have important implications for understanding craniofacial defects and neurological disorders and advancing diagnostic and therapeutic strategies.


Asunto(s)
Embrión de Mamíferos , Cabeza , Humanos , Morfogénesis , Cabeza/crecimiento & desarrollo
9.
Bio Protoc ; 13(20): e4854, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37900100

RESUMEN

Whole-brain clearing and imaging methods are becoming more common in mice but have yet to become standard in rats, at least partially due to inadequate clearing from most available protocols. Here, we build on recent mouse-tissue clearing and light-sheet imaging methods and develop and adapt them to rats. We first used cleared rat brains to create an open-source, 3D rat atlas at 25 µm resolution. We then registered and imported other existing labeled volumes and made all of the code and data available for the community (https://github.com/emilyjanedennis/PRA) to further enable modern, whole-brain neuroscience in the rat. Key features • This protocol adapts iDISCO (Renier et al., 2014) and uDISCO (Pan et al., 2016) tissue-clearing techniques to consistently clear rat brains. • This protocol also decreases the number of working hours per day to fit in an 8 h workday. Graphical overview.

10.
Front Pharmacol ; 14: 1225759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799971

RESUMEN

There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth. We applied, in gel foam at the site of nerve injury, Taxol to stabilize growing microtubules, and activated protein C to clear the debris field since computational models predicted that this drug combination regulating two subcellular processes at the growth cone produces synergistic growth. Physiologically, drug treatment restored or preserved pattern electroretinograms and some of the animals had detectable visual evoked potentials in the brain and behavioral optokinetic responses. Morphology experiments show that the four-drug combination protects axons or promotes axonal regrowth to the optic chiasm and beyond. We conclude that spatially targeted drug treatment is therapeutically relevant and can restore limited functional recovery.

11.
BMC Res Notes ; 16(1): 246, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777793

RESUMEN

Traditional histological analysis is conducted on thin tissue sections, limiting the data capture from large tissue volumes to 2D profiles, and requiring stereological methods for 3D assessment. Recent advances in microscopical and tissue clearing methods have facilitated 3D reconstructions of tissue structure. However, staining of large tissue blocks remains a challenge, often requiring specialised and expensive equipment to clear and immunolabel tissue. Here, we present the Affordable Brain Slice Optical Clearing (ABSOC) method: a modified iDISCO protocol which enables clearing and immunolabeling of mouse brain slices up to 1 mm thick using inexpensive reagents and equipment, with no intensive expert training required. We illustrate the use of ABSOC in 1 mm C57BL/6J mouse coronal brain slices sectioned through the dorsal hippocampus and immunolabelled with an anti-calretinin antibody. The ABSOC method can be readily used for histological studies of mouse brain in order to move from the use of very thin tissue sections to large volumes of tissue - giving more representative analysis of biological samples, without the need for sampling of small regions only.


Asunto(s)
Encéfalo , Microscopía , Ratones , Animales , Ratones Endogámicos C57BL , Microscopía/métodos , Imagenología Tridimensional/métodos , Manejo de Especímenes
12.
Pathol Oncol Res ; 29: 1611284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425091

RESUMEN

Perineural invasion (PNI) is a characteristic invasion pattern of distal cholangiocarcinoma (DCC). Conventional histopathologic examination is a challenging approach to analyze the spatial relationship between cancer and neural tissue in full-thickness bile duct specimens. Therefore, we used a tissue clearing method to examine PNI in DCC with three-dimensional (3D) structural analysis. The immunolabeling-enabled 3D imaging of solvent-cleared organs method was performed to examine 20 DCC specimens from five patients and 8 non-neoplastic bile duct specimens from two controls. The bile duct epithelium and neural tissue were labeled with CK19 and S100 antibodies, respectively. Two-dimensional hematoxylin/eosin staining revealed only PNI around thick nerve fibers in the deep layer of the bile duct, whereas PNI was not identified in the superficial layer. 3D analysis revealed that the parts of DCC closer to the mucosa exhibited more nerves than the normal bile duct. The nerve fibers were continuously branched and connected with thick nerve fibers in the deep layer of the bile duct. DCC formed a tubular structure invading from the epithelium and extending around thin nerve fibers in the superficial layer. DCC exhibited continuous infiltration around the thick nerve fibers in the deep layer. This is the first study using a tissue clearing method to examine the PNI of DCC, providing new insights into the underlying mechanisms.


Asunto(s)
Neoplasias de los Conductos Biliares , Conductos Biliares Extrahepáticos , Colangiocarcinoma , Humanos , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Invasividad Neoplásica/patología , Conductos Biliares Extrahepáticos/patología
13.
Front Oncol ; 13: 1062926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077833

RESUMEN

The liver has a complex and hierarchical segmental organization of arteries, portal veins, hepatic veins and lymphatic vessels. In-depth imaging of liver vasculature and malignancies could improve knowledge on tumor micro-environment, local tumor growth, invasion, as well as metastasis. Non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission transmission (PET) are routine for clinical imaging, but show inadequate resolution at cellular and subcellular level. In recent years, tissue clearing - a technique rendering tissues optically transparent allowing enhanced microscopy imaging - has made great advances. While mainly used in the neurobiology field, recently more studies have used clearing techniques for imaging other organ systems as well as tumor tissues. In this study, our aim was to develop a reproducible tissue clearing and immunostaining model for visualizing intrahepatic blood microvasculature and tumor cells in murine colorectal liver metastases. CLARITY and 3DISCO/iDISCO+ are two established clearing methods that have been shown to be compatible with immunolabelling, most often in neurobiology research. In this study, CLARITY unfortunately resulted in damaged tissue integrity of the murine liver lobes and no specific immunostaining. Using the 3DISCO/iDISCO+ method, liver samples were successfully rendered optically transparent. After which, successful immunostaining of the intrahepatic microvasculature using panendothelial cell antigen MECA-32 and colorectal cancer cells using epithelial cell adhesion molecule (EpCAM) was established. This approach for tumor micro-environment tissue clearing would be especially valuable for allowing visualization of spatial heterogeneity and complex interactions of tumor cells and their environment in future studies.

14.
J Neuroendocrinol ; 35(9): e13245, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36880566

RESUMEN

A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.


Asunto(s)
Neuronas , Organum Vasculosum , Ratones , Animales , Neuronas/metabolismo , Organum Vasculosum/fisiología , Núcleo Supraquiasmático/fisiología , Hipotálamo/metabolismo , Hipófisis
15.
Methods Mol Biol ; 2561: 87-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36399266

RESUMEN

Cerebrovascular dysfunction is a hallmark of Alzheimer's disease (AD) that is linked to cognitive decline. However, blood-brain barrier (BBB) disruption in AD is focal and requires sensitive methods to detect extravasated blood proteins and vasculature in large brain volumes. Fibrinogen, a blood coagulation factor, is deposited in AD brains at sites of BBB disruption and cerebrovascular damage. This chapter presents the methodology of fibrinogen immunolabeling-enabled three-dimensional (3D) imaging of solvent-cleared organs (iDISCO) which, when combined with immunolabeling of amyloid ß (Aß) and vasculature, enables sensitive detection of focal BBB vascular abnormalities, and reveals the spatial distribution of Aß plaques and fibrin deposits, in large tissue volumes from cleared human brains. Overall, fibrinogen iDISCO enables the investigation of neurovascular and neuroimmune mechanisms driving neurodegeneration in disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Fibrinógeno/metabolismo , Imagenología Tridimensional , Placa Amiloide
16.
Neuroendocrinology ; 113(2): 193-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35066506

RESUMEN

BACKGROUND: Selenoprotein T (SELENOT), a PACAP-regulated thioredoxin-like protein, plays a role in catecholamine secretion and protects dopaminergic neurons. However, the role of SELENOT in the establishment of the catecholaminergic (CA) neuronal system is not known yet. METHODS: We analyzed by immunohistochemistry and RNAscope in situ hybridization the distribution of SELENOT and the expression of its mRNA, respectively. In addition, 3D imaging involving immunostaining in toto, clearing through the iDISCO+ method, acquisitions by light-sheet microscopy, and processing of 3D images was performed to map the CA neuronal system. A semi-automatic quantification of 3D images was carried out. RESULTS: SELENOT protein and mRNA are widely distributed in the mouse brain, with important local variations. Three-dimensional mapping, through tyrosine hydroxylase (TH) labeling, and semi-automated quantification of CA neurons in brain-specific SELENOT knockout mice showed a significant decrease in the number of TH-positive neurons in the area postrema (AP-A2), the A11 cell group (A11), and the zona incerta (ZI-A13) of SELENOT-deficient females, and in the hypothalamus (Hyp-A12-A14-A15) of SELENOT-deficient females and males. CONCLUSION: These results showed that SELENOT is diffusely expressed in the mouse brain and that its deficiency impacts CA neuron distribution in different brain areas including Hyp-A12-A14-A15, in both male and female mice.


Asunto(s)
Imagenología Tridimensional , Neuronas , Ratones , Femenino , Masculino , Animales , Neuronas/metabolismo , Encéfalo/metabolismo , Hibridación in Situ , Ratones Noqueados , ARN Mensajero/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
17.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499143

RESUMEN

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease driven by inflammation and demyelination in the brain, spinal cord, and optic nerve. Optic neuritis, characterized by inflammation and demyelination of the optic nerve, is a symptom in many patients with MS. The optic nerve is the highway for visual information transmitted from the retina to the brain. It contains axons from the retinal ganglion cells (RGCs) that reside in the retina, myelin forming oligodendrocytes and resident microglia and astrocytes. Inflammation, demyelination, and axonal degeneration are also present in the optic nerve of mice subjected to experimental autoimmune encephalomyelitis (EAE), a preclinical mouse model of MS. Monitoring the optic nerve in EAE is a useful strategy to study the presentation and progression of pathology in the visual system; however, current approaches have relied on sectioning, staining and manual quantification. Further, information regarding the spatial load of lesions and inflammation is dependent on the area of sectioning. To better characterize cellular pathology in the EAE model, we employed a tissue clearing and 3D immunolabelling and imaging protocol to observe patterns of immune cell infiltration and activation throughout the optic nerve. Increased density of TOPRO staining for nuclei captured immune cell infiltration and Iba1 immunostaining was employed to monitor microglia and macrophages. Axonal degeneration was monitored by neurofilament immunolabelling to reveal axonal swellings throughout the optic nerve. In parallel, we developed a convolutional neural network with a UNet architecture (CNN-UNet) called BlebNet for automated identification and quantification of axonal swellings in whole mount optic nerves. Together this constitutes a toolkit for 3-dimensional immunostaining to monitor general optic nerve pathology and fast automated quantification of axonal defects that could also be adapted to monitor axonal degeneration and inflammation in other neurodegenerative disease models.


Asunto(s)
Aprendizaje Profundo , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Neuritis Óptica , Ratones , Animales , Ratones Endogámicos C57BL , Neuritis Óptica/patología , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/patología , Degeneración Nerviosa , Inflamación , Modelos Animales de Enfermedad
18.
Acta Neuropathol ; 144(4): 651-676, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040521

RESUMEN

Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Enfermedad de Alzheimer/patología , Humanos , Imagenología Tridimensional , Locus Coeruleus/patología , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo
19.
Front Neurosci ; 16: 866884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516798

RESUMEN

The mammalian brain is by far the most advanced organ to have evolved and the underlying biology is extremely complex. However, with aging populations and sedentary lifestyles, the prevalence of neurological disorders is increasing around the world. Consequently, there is a dire need for technologies that can help researchers to better understand the complexity of the brain and thereby accelerate therapies for diseases with origin in the central nervous system. One such technology is light-sheet fluorescence microscopy (LSFM) which in combination with whole organ immunolabelling has made it possible to visualize an intact mouse brain with single cell resolution. However, the price for this level of detail comes in form of enormous datasets that often challenges extraction of quantitative information. One approach for analyzing whole brain data is to align the scanned brains to a reference brain atlas. Having a fixed spatial reference provides each voxel of the sample brains with x-, y-, z-coordinates from which it is possible to obtain anatomical information on the observed fluorescence signal. An additional and important benefit of aligning light sheet data to a reference brain is that the aligned data provides a digital map of gene expression or cell counts which can be deposited in databases or shared with other scientists. This review focuses on the emerging field of virtual neuroscience using digital brain maps and discusses some of challenges incurred when registering LSFM recorded data to a standardized brain template.

20.
Eur J Neurosci ; 56(2): 3875-3888, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636970

RESUMEN

Although several observations suggest that the constitutive biological, genetic or physiological changes leading to autism spectrum disorders (ASD) start in utero, their early impact on the number and density of neurons in the brain remains unknown. Using genetic fate mapping associated with the immunollabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO) clearing method we identified and counted a selective population of neocortical and hippocampal pyramidal neurons in the in utero valproate (VPA) mouse model of autism. We report that 1 day before birth, the number of pyramidal neurons born at E14.5 in the neocortex and hippocampus of VPA mice is smaller than in age-matched controls. VPA also induced a reduction of the neocortical-but not hippocampal-volume 1 day before birth. Interestingly, VPA mice present an increase in both neocortical and hippocampal volumes 2 days after birth compared with controls. These results suggest that the VPA-exposed hippocampus and neocortex differ substantially from controls during the highly complex perinatal period, and specially 1 day before birth, reflecting the early pathogenesis of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Embarazo , Células Piramidales/fisiología , Ácido Valproico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA