Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theranostics ; 10(19): 8757-8770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754276

RESUMEN

Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Diaminas/farmacología , Glioma/tratamiento farmacológico , Glioma/genética , Ácido Glutámico/metabolismo , Glutaratos/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutación , Espectroscopía de Protones por Resonancia Magnética , Piridinas/farmacología
2.
Trends Neurosci ; 43(5): 343-354, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32353337

RESUMEN

Aberrant metabolism is a key factor in many neurological disorders. The ability to measure such metabolic impairment could lead to improved detection of disease progression, and development and monitoring of new therapeutic approaches. Hyperpolarized 13C magnetic resonance spectroscopy (MRS) is a developing imaging technique that enables non-invasive measurement of enzymatic activity in real time in living organisms. Primarily applied in the fields of cancer and cardiac disease so far, this metabolic imaging method has recently been used to investigate neurological disorders. In this review, we summarize the preclinical research developments in this emerging field, and discuss future prospects for this exciting technology, which has the potential to change the clinical paradigm for patients with neurological disorders.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Encéfalo/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética
3.
Neuroimage Clin ; 12: 180-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27437179

RESUMEN

Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Glioma/diagnóstico por imagen , Isocitrato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA