Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400618, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073741

RESUMEN

A single enzyme, Baliospermum montanum hydroxynitrile lyase (BmHNL), without alteration, enabled bidirectional catalysis in enantiocomplementary synthesis of chiral ß-nitroalcohols. BmHNL catalyzed promiscuous Henry (24 examples) and retro-Henry reaction (22 examples) provided up to >99% and 50% conversion to (S)- and (R)-ß-nitroalcohols respectively, while both cases displayed up to >99% ee. The broad substrate scope and high stereoselectivity of BmHNL represents its synthetic applications in sustainable production of diverse chiral ß-nitroalcohols. Kinetic parameters of BmHNL was determined for Henry and retro-Henry reaction, which reveals poor catalytic efficiency for both the promiscuous transformations, however, the former has better efficiency than the latter. Practical applicability of the biocatalyst and transformation was illustrated by preparative scale synthesis of chiral intermediates of (S)-Tembamide, and (S)-Micanozole.

2.
Chembiochem ; 25(11): e202400118, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526556

RESUMEN

Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Šresolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.


Asunto(s)
Aldehído-Liasas , Mutagénesis Sitio-Dirigida , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Aldehído-Liasas/genética , Animales , Benzaldehídos/metabolismo , Benzaldehídos/química , Acetonitrilos/química , Acetonitrilos/metabolismo , Modelos Moleculares , Cristalografía por Rayos X , Nitrilos/metabolismo , Nitrilos/química , Estereoisomerismo
3.
Biosci Biotechnol Biochem ; 88(2): 138-146, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38017623

RESUMEN

Aldoxime (R1R2C=NOH) and nitrile (R-C≡N) are nitrogen-containing compounds that are found in species representing all kingdoms of life. The enzymes discovered from the microbial "aldoxime-nitrile" pathway (aldoxime dehydratase, nitrile hydratase, amidase, and nitrilase) have been thoroughly studied because of their industrial importance. Although plants utilize cytochrome P450 monooxygenases to produce aldoxime and nitrile, many biosynthetic pathways are yet to be studied. Cyanogenic millipedes accumulate various nitrile compounds, such as mandelonitrile. However, no such aldoxime- and nitrile-metabolizing enzymes have been identified in millipedes. Here, I review the exploration of novel enzymes from plants and millipedes with characteristics distinct from those of microbial enzymes, the catalysis of industrially useful reactions, and applications of these enzymes for nitrile compound production.


Asunto(s)
Artrópodos , Animales , Artrópodos/metabolismo , Nitrilos/metabolismo , Hidroliasas , Oximas , Catálisis
4.
Bio Protoc ; 13(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37397798

RESUMEN

Mandelonitrile is a nitrogen-containing compound, considered an essential secondary metabolite. Chemically, it is a cyanohydrin derivative of benzaldehyde, with relevant functions in different physiological processes including defense against phytophagous arthropods. So far, procedures for detecting mandelonitrile have been effectively applied in cyanogenic plant species such as Prunus spp. Nevertheless, its presence in Arabidopsis thaliana , considered a non-cyanogenic species, has never been determined. Here, we report the development of an accurate protocol for mandelonitrile quantification in A. thaliana within the context of A. thaliana -spider mite interaction. First, mandelonitrile was isolated from Arabidopsis rosettes using methanol; then, it was derivatized by silylation to enhance detection and, finally, it was quantified using gas chromatography-mass spectrometry. The selectivity and sensitivity of this method make it possible to detect low levels of mandelonitrile (LOD 3 ppm) in a plant species considered non-cyanogenic that, therefore, will have little to no cyanogenic compounds, using a small quantity of starting material (≥100 mg).

5.
J Biol Chem ; 298(3): 101650, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101448

RESUMEN

Hydroxynitrile lyase from Linum usitatissimum (LuHNL) is an enzyme involved in the catabolism of cyanogenic glycosides to release hydrogen cyanide upon tissue damage. This enzyme strictly conserves the substrate- and NAD(H)-binding domains of Zn2+-containing alcohol dehydrogenase (ADH); however, there is no evidence suggesting that LuHNL possesses ADH activity. Herein, we determined the ligand-free 3D structure of LuHNL and its complex with acetone cyanohydrin and (R)-2-butanone cyanohydrin using X-ray crystallography. These structures reveal that an A-form NAD+ is tightly but not covalently bound to each subunit of LuHNL. The restricted movement of the NAD+ molecule is due to the "sandwich structure" on the adenine moiety of NAD+. Moreover, the structures and mutagenesis analysis reveal a novel reaction mechanism for cyanohydrin decomposition involving the cyano-zinc complex and hydrogen-bonded interaction of the hydroxyl group of cyanohydrin with Glu323/Thr65 and H2O/Lys162 of LuHNL. The deprotonated Lys162 and protonated Glu323 residues are presumably stabilized by a partially desolvated microenvironment. In summary, the substrate binding geometry of LuHNL provides insights into the differences in activities of LuHNL and ADH, and identifying this novel reaction mechanism is an important contribution to the study of hydroxynitrile lyases.


Asunto(s)
Aldehído-Liasas , Lino , Proteínas de Plantas , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Lino/enzimología , Modelos Moleculares , NAD/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Zinc/química , Zinc/metabolismo
6.
Bioorg Chem ; 120: 105594, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35007952

RESUMEN

Protein engineering to improve promiscuous catalytic activity is important for biocatalytic application of enzymes in green synthesis. We uncovered the significance of binding site residues in Arabidopsis thaliana hydroxynitrile lyase (AtHNL) for promiscuous retro-nitroaldolase activity. Engineering of AtHNL has improved enantioselective retro-nitroaldolase activity, a synthetically important biotransformation, for the production of enantiopure ß-nitroalcohols having absolute configuration opposite to that of the stereopreference of the HNL. The variant F179A has shown âˆ¼ 12 fold increased selectivity towards the retro-nitroaldol reaction over cyanogenesis, the natural activity of the parent enzyme. Screening of the two saturation libraries of Phe179 and Tyr14 revealed several variants with higher kcat, while F179N showed âˆ¼ 2.4-fold kcat/Km than the native enzyme towards retro-nitroaldol reaction. Variants F179N, F179M, F179W, F179V, F179I, Y14L, and Y14M have shown > 99% ee in the preparation of (S)-2-nitro-1-phenylethanol (NPE) from the racemic substrate, while F179N has shown the E value of 138 vs. 81 by the wild type. Our molecular docking and dynamics simulations (MDS) studies results provided insights into the molecular basis of higher enantioselectivity by the F179N toward the retro-nitroaldolase activity than the other mutants. Binding energy calculations also showed the higher negative binding free energy in the case of F179N-(R)-NPE compared to other complexes that support our experimental low Km by the F179N for NPE. A plausible retro-nitroaldol reaction mechanism was proposed based on the MDS study of enzyme-substrate interaction.


Asunto(s)
Aldehído-Liasas , Arabidopsis , Aldehído-Liasas/química , Catálisis , Simulación del Acoplamiento Molecular
7.
Enzyme Microb Technol ; 153: 109915, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34670185

RESUMEN

The catalytically-active inclusion bodies (CatIBs) represent a promising strategy for immobilizing enzyme without additional carriers and chemicals, which has aroused great attention in academic and industrial communities. In this work, we discovered two natural parallel right-handed coiled-coil tetramer peptides from PDB database by a structural mining strategy. The two self-assembling peptides, NSPdoT from rotavirus and HVdoT from human Vasodilator-stimulated phosphoprotein, efficiently induced the CatIBs formation of a (R)-Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) in Escherichia coli cells. This is convenient to simultaneously purify and immobilize the target proteins as biocatalysts. As expected, HVdoT-AtHNL and NSPdoT-AtHNL possessed drastically increased tolerance toward lower pH values, which will be very critical to synthesize cyanohydrins under acidic condition for suppressing the non-enzymatic side reaction. In addition. AtHNL-CatIBs are produced at high yield in host cells as bioactive microparticles, which exhibited high thermal and pH stabilities. Therefore, the CatIBs method represent a promising application for the immobilization of enzymes in the biocatalysis field.


Asunto(s)
Cuerpos de Inclusión , Aldehído-Liasas , Humanos
8.
Biotechnol Lett ; 43(1): 287-296, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32936375

RESUMEN

OBJECTIVES: Chiral 2-hydroxycarboxylic acids and 2-hydroxycarboxamides are valuable synthons for the chemical industry. RESULTS: The biocatalytic syntheses of (R)-mandelic acid and (R)-mandelic acid amide by recombinant Escherichia coli clones were studied. Strains were constructed which simultaneously expressed a (R)-specific oxynitrilase (hydroxynitrile lyase) from the plant Arabidopsis thaliana together with the arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191. In addition, recombinant strains were constructed which expressed a previously described acid tolerant variant of the oxynitrilase and an amide forming variant of the nitrilase. The whole cell catalysts which simultaneously expressed the (R)-specific oxynitrilase and the wild-type nitrilase transformed in slightly acidic buffer systems benzaldehyde plus cyanide preferentially to (R)-mandelic acid with ee-values > 95%. The combination of the (R)-specific oxynitrilase with the amide forming nitrilase variant gave whole cell catalysts which converted at pH-values ≤ pH 5 benzaldehyde plus cyanide with a high degree of enantioselectivity (ee > 90%) to (R)-mandelic acid amide. The acid and the amide forming catalysts also converted chlorinated benzaldehydes with cyanide to chlorinated mandelic acid or chlorinated mandelic acid amides. CONCLUSIONS: Efficient systems for the biocatalytic production of (R)-2-hydroxycarboxylic acids and (R)-2-hydroxycarboxamides were generated.


Asunto(s)
Aldehído-Liasas , Proteínas Bacterianas , Escherichia coli/genética , Ácidos Mandélicos , Proteínas Recombinantes , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Amidas/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotransformación , Escherichia coli/metabolismo , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
9.
FEBS J ; 288(5): 1679-1695, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32679618

RESUMEN

Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrin into cyanide and the corresponding aldehyde or ketone. Moreover, they catalyze the synthesis of cyanohydrin in the reverse reaction, utilized in industry for preparation of enantiomeric pure pharmaceutical ingredients and fine chemicals. We discovered a new HNL from the cyanogenic millipede, Chamberlinius hualienensis. The enzyme displays several features including a new primary structure, high stability, and the highest specific activity in (R)-mandelonitrile ((R)-MAN) synthesis (7420 U·mg-1 ) among the reported HNLs. In this study, we elucidated the crystal structure and reaction mechanism of natural ChuaHNL in ligand-free form and its complexes with acetate, cyanide ion, and inhibitors (thiocyanate or iodoacetate) at 1.6, 1.5, 2.1, 1.55, and 1.55 Å resolutions, respectively. The structure of ChuaHNL revealed that it belongs to the lipocalin superfamily, despite low amino acid sequence identity. The docking model of (R)-MAN with ChuaHNL suggested that the hydroxyl group forms hydrogen bonds with R38 and K117, and the nitrile group forms hydrogen bonds with R38 and Y103. The mutational analysis showed the importance of these residues in the enzymatic reaction. From these results, we propose that K117 acts as a base to abstract a proton from the hydroxyl group of cyanohydrins and R38 acts as an acid to donate a proton to the cyanide ion during the cleavage reaction of cyanohydrins. The reverse mechanism would occur during the cyanohydrin synthesis. (Photo: Dr. Yuko Ishida) DATABASES: Structural data are available in PDB database under the accession numbers 6JHC, 6KFA, 6KFB, 6KFC, and 6KFD.


Asunto(s)
Acetonitrilos/química , Aldehído-Liasas/química , Proteínas de Artrópodos/química , Artrópodos/química , Lipocalinas/química , Acetonitrilos/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Artrópodos/enzimología , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Yodoacético/química , Ácido Yodoacético/metabolismo , Cinética , Lipocalinas/genética , Lipocalinas/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tiocianatos/química , Tiocianatos/metabolismo
10.
Appl Biochem Biotechnol ; 193(2): 560-576, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33044692

RESUMEN

Enantiopure ß-nitroalcohols are versatile intermediates used in the synthesis of important pharmaceuticals and chiral synthons. In this article, immobilized Arabidopsis thaliana HNL (AtHNL)-catalyzed preparation of (S)-ß-nitroalcohols from their racemic mixtures via retro-Henry reaction was studied. AtHNL used in biocatalysis was immobilized by physical adsorption in inexpensive celite®545. Under optimized biocatalytic conditions, the total turnover number of the catalyst has improved 2.3-fold for (S)-2-nitro-1-phenylethanol (NPE) synthesis, than free enzyme catalysis. This study reported for the first time celite-AtHNL-catalyzed retro-Henry reaction at low pH. At pH 4.5 and 5.0, 62% ee and 41% conversion, and 97% ee and 42% conversion of (S)-NPE were obtained respectively, while the free enzyme inactivates at pH < 5.0. The increased catalytic efficiency and pH stability of the catalyst could be possibly due to increased stability of AtHNL by immobilization. A dozen of racemic ß-nitroalcohols were converted into their corresponding (S)-ß-nitroalcohols using this reaction; among them, eight were not tested earlier. The immobilized enzyme has showed broad substrate selectivity in the retro-Henry reaction, and products were obtained up to 98.5% ee.


Asunto(s)
Aldehído-Liasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Enzimas Inmovilizadas/química , Catálisis
11.
J Ind Microbiol Biotechnol ; 46(7): 887-898, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30879221

RESUMEN

A hydroxynitrile lyase (HNL) from the millipede Chamberlinius hualienensis has high potential for industrial use in the synthesis of cyanohydrins. However, obtaining sufficient amounts of millipedes is difficult, and the production of the Chamberlinius hualienensis HNL (ChuaHNL) in E. coli has not been very successful. Therefore, we investigated the conditions required for high-yield heterologous production of this enzyme using Pichia pastoris. When we employed P. pastoris to express His-ChuaHNL, the yield was very low (22.6 ± 3.8 U/L culture). Hence, we investigated the effects of ChuaHNL codon optimization and the co-production of two protein disulfide isomerases (PDIs) [from P. pastoris (PpPDI) and C. hualienensis (ChuaPDI1, ChuaPDI2)] on His-ChuaHNL production. The productivity of His-ChuaHNL was increased approximately 140 times per unit culture to 3170 ± 144.7 U/L by the co-expression of codon-optimized ChuaHNL and PpPDI. Moreover, we revealed that the N-glycosylation on ChuaHNL had a large effect on the stability, enzyme secretion, and catalytic properties of ChuaHNL in P. pastoris. This study demonstrates an economical and efficient approach for the production of HNL, and the data show that glycosylation has a large effect on the enzyme properties and the P. pastoris expression system.


Asunto(s)
Aldehído-Liasas/metabolismo , Pichia/enzimología , Codón , Glicosilación , Pichia/genética , Proteína Disulfuro Isomerasas/genética
12.
Bioorg Chem ; 84: 32-40, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30481644

RESUMEN

Hydroxynitrile lyase (HNL) catalyzed enantioselective CC bond formation is an efficient approach to synthesize chiral cyanohydrins which are important building blocks in the synthesis of a number of fine chemicals, agrochemicals and pharmaceuticals. Immobilization of HNL is known to provide robustness, reusability and in some cases also enhances activity and selectivity. We optimized the preparation of immobilization of Baliospermium montanum HNL (BmHNL) by cross linking enzyme aggregate (CLEA) method and characterized it by SEM. Optimization of biocatalytic parameters was performed to obtain highest % conversion and ee of (S)-mandelonitrile from benzaldehyde using CLEA-BmHNL. The optimized reaction parameters were: 20 min of reaction time, 7 U of CLEA-BmHNL, 1.2 mM substrate, and 300 mM citrate buffer pH 4.2, that synthesized (S)-mandelonitrile in ∼99% ee and ∼60% conversion. Addition of organic solvent in CLEA-BmHNL biocatalysis did not improve in % ee or conversion of product unlike other CLEA-HNLs. CLEA-BmHNL could be successfully reused for eight consecutive cycles without loss of conversion or product formation and five cycles with a little loss in enantioselectivity. Eleven different chiral cyanohydrins were synthesized under optimal biocatalytic conditions in up to 99% ee and 59% conversion, however the % conversion and ee varied for different products. CLEA-BmHNL has improved the enantioselectivity of (S)-mandelonitrile synthesis compared to the use of purified BmHNL. Nine aldehydes not tested earlier with BmHNL were converted into their corresponding (S)-cyanohydrins for the first time using CLEA-BmHNL. Among the eleven (S)-cyanohydrins syntheses reported here, eight of them have not been synthesized by any CLEA-HNL. Overall, this study showed preparation, characterization of a stable, robust and recyclable biocatalyst i.e. CLEA-BmHNL and its biocatalytic application in the synthesis of different (S)-aromatic cyanohydrins.


Asunto(s)
Aldehído-Liasas/metabolismo , Enzimas Inmovilizadas/metabolismo , Euphorbiaceae/enzimología , Nitrilos/metabolismo , Aldehído-Liasas/química , Biocatálisis , Enzimas Inmovilizadas/química , Estructura Molecular , Nitrilos/química
13.
Biosci Biotechnol Biochem ; 82(10): 1760-1769, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29975178

RESUMEN

The leaves of Nandina domestica Thunb. exhibited high hydroxynitrile lyase (HNL) activity in (R)-mandelonitrile synthesis. The specific activity of young leaves was significantly higher than that of mature leaves. We isolated two HNLs with molecular mass of 24.9 kDa (NdHNL-S) and 28.0 kDa (NdHNL-L) from the young leaves. Both NdHNLs were composed of two identical subunits, without FAD and carbohydrates. We purified NdHNL-L and revealed its enzymatic properties. The whole deduced amino acid sequence of NdHNL-L was not homologous to any other HNLs, and the specific activity for mandelonitrile synthesis by NdHNL-L was higher than that by other plant HNLs. The enzyme catalyzed enantioselective synthesis of (R)-cyanohydrins, exhibited high activity at pH 4.0, and high stability in the pH range of 3.5-8.0 and below 55°C. Thus, NdHNL-L is a novel HNL with novel amino acid sequence and has a potential for the efficient production of (R)-cyanohydrins.


Asunto(s)
Aldehído-Liasas/metabolismo , Berberidaceae/enzimología , Aldehído-Liasas/química , Aldehído-Liasas/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Hojas de la Planta/enzimología , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Temperatura
14.
Int J Biol Macromol ; 118(Pt A): 189-194, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29890248

RESUMEN

Hydroxynitrile lyases (HNLs) are widely used in the asymmetric synthesis of cyanohydrins which are organic compounds used in the production of fine chemicals and pharmaceuticals, because these enzymes exhibit high catalytic efficiency and are very economical. In the present study, seeds of A. pedunculata Pall were identified as new potential source of HNLs. The HNL from A. pedunculata Pall (APHNL) was purified 138 fold and 4.20% yield with a specific activity of 661 U/mg. SDS-PAGE result showed the enzyme to be present as a monomer and the relative molecular mass determined by MALDI-TOF MS was 61 kDa. APHNL owned highest activity at pH 6.0 and at 60 °C temperature, showing activity up to 80 °C and stable up to 60 °C. APHNL has a Km of 0.5 mM, Vmax of 665.9 µmol mg-1 min-1, Kcat of 676.5 s-1 and Kcat/Km of 1353 s-1 mM-1 using mandelonitrile as substrate. Syntheses of (R)-mandelonitrile and (R)-2-Hydroxy-2-(3-phenoxy-phenyl)-acetonitrile were carried out using APHNL and molar conversion of (R)-mandelonitrile and (R)-2-Hydroxy-2-(3-phenoxy-phenyl)-acetonitrile were 90% and 98% with 94% and 93% ee, respectively. These results indicated that APHNL was an excellent biocatalyst and has very high potential for synthesis of enantiopure cyanohydrins.


Asunto(s)
Aldehído-Liasas/química , Semillas/química , Thoracica/química , Aldehído-Liasas/aislamiento & purificación , Animales , Catálisis , Cinética , Semillas/enzimología , Estereoisomerismo , Thoracica/enzimología
15.
Appl Biochem Biotechnol ; 185(4): 925-946, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29380295

RESUMEN

Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.


Asunto(s)
Aldehído-Liasas/metabolismo , Amidohidrolasas/metabolismo , Aminohidrolasas/metabolismo , Hidroliasas/metabolismo , Nitrilos/metabolismo , Aldehído-Liasas/genética , Amidohidrolasas/genética , Aminohidrolasas/genética , Biotransformación , Hidroliasas/genética
16.
FEBS J ; 285(2): 313-324, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155493

RESUMEN

Hydroxynitrile lyases (HNLs) are enzymes used in the synthesis of chiral cyanohydrins. The HNL from Passiflora edulis (PeHNL) is R-selective and is the smallest HNL known to date. The crystal structures of PeHNL and its C-terminal peptide depleted derivative were determined by molecular replacement method using the template structure of a heat stable protein, SP1, from Populus tremula at 2.8 and 1.8 Å resolution, respectively. PeHNL belongs to dimeric α+ß barrel superfamily consisting of a central ß-barrel in the middle of a dimer. The structure of PeHNL complexed with (R)-mandelonitrile ((R)-MAN) was also determined. The hydroxyl group of (R)-MAN forms hydrogen bonds with His8 and Tyr30 in the active site, whereas the nitrile group is oriented toward the carboxyl group of Glu54, unlike other HNLs, where it interacts with basic residues typically. The results of mutational analysis indicate that the catalytic dyad of His8-Asn101 is critical for the enzymatic reaction. The length of the hydrogen bond between His-Nδ1 and Asn101-Oδ1 is short in the PeHNL-(R)-MAN complex (~ 2.6 Å), which would increase the basicity of His8 to abstract a proton from the hydroxyl group of (R)-MAN. The cyanide ion released from the nitrile group abstracts a proton from the protonated His8 to generate a hydrogen cyanide. Thus, the His8 in the active site of PeHNL acts both as a general acid and a general base in the reaction. ENZYMES: EC 4.1.2.10 DATABASE: Structural data are available in PDB database under the accession numbers 5XZQ, 5XZT, and 5Y02.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Passiflora/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Aldehído-Liasas/genética , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Proteínas de Plantas/genética , Conformación Proteica , Homología de Secuencia de Aminoácido
17.
Chembiochem ; 19(4): 312-316, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29131473

RESUMEN

Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L-1 , is described. DtHNL1 constitutes approximately 80 % of the total protein content. The crude enzyme was immobilized. Crosslinked enzyme aggregates (CLEAs) resulted in significant enhancement of the biocatalyst stability under acidic conditions (activity retained after 168 h at pH 2.4). The DtHNL1-CLEA was employed for (R)-mandelonitrile synthesis (99 % conversion, 98 % enantiomeric excess) in a biphasic system, and evaluated for the synthesis of (R)-hydroxypivaldehyde cyanohydrin under reaction conditions that immediately inactivated non-immobilized DtHNL1. The results show the DtHNL1-CLEA to be a stable biocatalyst for the synthesis of enantiomerically pure cyanohydrins under acidic conditions.


Asunto(s)
Aldehído-Liasas/metabolismo , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Helechos/enzimología , Nitrilos/metabolismo , Pichia/enzimología , Aldehído-Liasas/biosíntesis , Aldehído-Liasas/química , Enzimas Inmovilizadas/biosíntesis , Enzimas Inmovilizadas/química , Helechos/microbiología , Nitrilos/química , Agregado de Proteínas , Estereoisomerismo
18.
ACS Catal ; 7(6): 4221-4229, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28798888

RESUMEN

Evolutionarily related hydroxynitrile lyases from rubber tree (HbHNL) and from Arabidopsis thaliana (AtHNL) follow different catalytic mechanisms with opposite enantioselectivity toward mandelonitrile. We hypothesized that the HbHNL-like mechanism evolved from an enzyme with an AtHNL-like mechanism. We created ancestor-like composite active-sites in each scaffold to elucidate how this transition may have occurred. Surprisingly, a composite active site in HbHNL maintained (S)-selectivity, while the identical set of active site residues in AtHNL maintained (R)-selectivity. Composite active-site mutants that are (S)-selective without the Lys236 and Thr11 that are required for the classical (S)-HNL mechanism suggests a new mechanism. Modeling suggested a possibility for this new mechanism that does not exist in modern enzymes. Thus, the last common ancestor of HbHNL and AtHNL may have used an extinct mechanism, not the AtHNL-like mechanism. Multiple mechanisms are possible with the same catalytic residues and residues outside the active site strongly influence mechanism and enantioselectivity.

19.
J Biotechnol ; 235: 24-31, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27067080

RESUMEN

Hydroxynitrile lyases (HNLs) catalyze the asymmetric addition of HCN to aldehydes producing enantiomerically pure cyanohydrins. These enzymes can be heterologously expressed in large quantities making them interesting candidates for industrial applications. The HNLs from Rosaceae evolved from flavin dependent dehydrogenase/oxidase structures. Here we report the high resolution X-ray structure of the highly glycosylated Prunus amygdalus HNL isoenzyme5 (PaHNL5 V317A) expressed in Aspergillus niger and its complex with benzyl alcohol. A comparison with the structure of isoenzyme PaHNL1 indicates a higher accessibility to the active site and a larger cavity for PaHNL5. Additionally, the PaHNL5 complex structure with benzyl alcohol was compared with the structurally related aryl-alcohol oxidase (AAO). Even though both enzymes contain an FAD-cofactor and histidine residues at crucial positions in the active site, PaHNL5 lacks the oxidoreductase activity. The structures indicate that in PaHNLs benzyl alcohol is bound too far away from the FAD cofactor in order to be oxidized.


Asunto(s)
Aldehído-Liasas , Flavinas/metabolismo , Proteínas de Plantas , Prunus dulcis/enzimología , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Aldehído-Liasas/ultraestructura , Isoenzimas/química , Isoenzimas/metabolismo , Isoenzimas/ultraestructura , Modelos Moleculares , Oxidación-Reducción , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestructura
20.
Proc Natl Acad Sci U S A ; 112(34): 10605-10, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261304

RESUMEN

Hydroxynitrile lyase (HNL) catalyzes the degradation of cyanohydrins and causes the release of hydrogen cyanide (cyanogenesis). HNL can enantioselectively produce cyanohydrins, which are valuable building blocks for the synthesis of fine chemicals and pharmaceuticals, and is used as an important biocatalyst in industrial biotechnology. Currently, HNLs are isolated from plants and bacteria. Because industrial biotechnology requires more efficient and stable enzymes for sustainable development, we must continuously explore other potential enzyme sources for the desired HNLs. Despite the abundance of cyanogenic millipedes in the world, there has been no precise study of the HNLs from these arthropods. Here we report the isolation of HNL from the cyanide-emitting invasive millipede Chamberlinius hualienensis, along with its molecular properties and application in biocatalysis. The purified enzyme displays a very high specific activity in the synthesis of mandelonitrile. It is a glycosylated homodimer protein and shows no apparent sequence identity or homology with proteins in the known databases. It shows biocatalytic activity for the condensation of various aromatic aldehydes with potassium cyanide to produce cyanohydrins and has high stability over a wide range of temperatures and pH values. It catalyzes the synthesis of (R)-mandelonitrile from benzaldehyde with a 99% enantiomeric excess, without using any organic solvents. Arthropod fauna comprise 80% of terrestrial animals. We propose that these animals can be valuable resources for exploring not only HNLs but also diverse, efficient, and stable biocatalysts in industrial biotechnology.


Asunto(s)
Acetonitrilos/metabolismo , Aldehído-Liasas/aislamiento & purificación , Aldehídos/metabolismo , Artrópodos/enzimología , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Animales , Secuencia de Bases , Benzaldehídos/metabolismo , Biocatálisis , ADN Complementario/genética , Glicosilación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Estructura Molecular , Nitrilos/metabolismo , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA