Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 83: 142-154, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39142626

RESUMEN

Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Nicotiana , Proteínas Recombinantes de Fusión , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Fragmentos Fc de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/genética , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/metabolismo , Plantas Modificadas Genéticamente
2.
Microorganisms ; 11(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38004644

RESUMEN

The class II hydrophobin group (HFBII) is an extracellular group of proteins that contain the HFBII domain and eight conserved cysteine residues. These proteins are exclusively secreted by fungi and have multiple functions with a probable role as effectors. In the present study, a total of 45 amino acid sequences of hydrophobin class II proteins from different phytopathogenic fungi were retrieved from the NCBI database. We used the integration of well-designed bioinformatic tools to characterize and predict their physicochemical parameters, novel motifs, 3D structures, multiple sequence alignment (MSA), evolution, and functions as effector proteins through molecular docking. The results revealed new features for these protein members. The ProtParam tool detected the hydrophobicity properties of all proteins except for one hydrophilic protein (KAI3335996.1). Out of 45 proteins, six of them were detected as GPI-anchored proteins by the PredGPI server. Different 3D structure templates with high pTM scores were designed by Multifold v1, AlphaFold2, and trRosetta. Most of the studied proteins were anticipated as apoplastic effectors and matched with the ghyd5 gene of Fusarium graminearum as virulence factors. A protein-protein interaction (PPI) analysis unraveled the molecular function of this group as GTP-binding proteins, while a molecular docking analysis detected a chitin-binding effector role. From the MSA analysis, it was observed that the HFBII sequences shared conserved 2 Pro (P) and 2 Gly (G) amino acids besides the known eight conserved cysteine residues. The evolutionary analysis and phylogenetic tree provided evidence of episodic diversifying selection at the branch level using the aBSREL tool. A detailed in silico analysis of this family and the present findings will provide a better understanding of the HFBII characters and evolutionary relationships, which could be very useful in future studies.

3.
J Invertebr Pathol ; 201: 108006, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844657

RESUMEN

Class I/II hydrophobins constitute a family of small amphiphilic proteins that mediate cell hydrophobicity and adhesion to host or substrata and have pleiotropic effects in filamentous fungi. Here we report that only class I Hyd1 is essential for conidial hydrophobicity and insect pathogenicity among three hydrophobins (Hyd1-3) characterized in Metarhizium robertsii, an insect-pathogenic fungus. Aerial conidiation levels of three Δhyd1 mutants were much more reduced in 5-day-old cultures than in 7-day-old cultures, which were wettable (hydrophilic), but restored to a wild-type level in 15-day-old cultures. The Δhyd1 mutants were compromised in conidial quality, including significant decreases in hydrophobicity (58%), adhesion to insect cuticle (36%), insect pathogenicity via normal cuticle infection (37%), UVB resistance (20%), and heat tolerance (10%). In contrast, none of all examined phenotypes were affected in the null mutants of hyd2 and hyd3. Intriguingly, micromorphology and integrity of hydrophobin rodlet bundles on conidial coat were not affected in all mutant and wild-type strains, but the rodlet bundles were disordered in the absence of hyd1, suggesting a link of the disorder to the decreased hydrophobicity. Therefore, Hyd1 mediates the fungal hydrophobicity and plays an important role in conidial quality control and insect-pathogenic lifecycle. Class I Hyd2 and class II Hyd3 seem functionally redundant in M. robertsii.


Asunto(s)
Proteínas Fúngicas , Metarhizium , Animales , Esporas Fúngicas/genética , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Insectos , Interacciones Hidrofóbicas e Hidrofílicas
4.
Prep Biochem Biotechnol ; 53(10): 1306-1312, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37139745

RESUMEN

Hydrophobins are amphipathic proteins with small molecular weights produced in filamentous fungi. These proteins are highly stable due to the disulfide bonds formed between the protected cysteine residues. They have great potential for usage in many different fields such as surface modifications, tissue engineering, and drug transport systems because hydrophobins are surfactants and soluble in harsh mediums. In this study, it was aimed to determine the hydrophobin proteins responsible for the hydrophobicity of the super-hydrophobic fungi isolates in the culture medium and to carry out the molecular characterization of the hydrophobin producer species. As a result of measuring surface hydrophobicity by determining the water contact angle, five different fungi with the highest hydrophobicity were classified as Cladosporium by classical and molecular (ITS and D1-D2 regions) methods. Also, protein extraction according to the recommended method for obtaining hydrophobins from spores of these Cladosporium species indicated that the isolates have similar protein profiles. Ultimately, the isolate named A5 with the highest water contact angle was identified as Cladosporium macrocarpum, and the 7 kDa band was appointed as a hydrophobin since it was the most abundant protein in protein extraction for this species.


Asunto(s)
Cladosporium , Proteínas Fúngicas , Proteínas Fúngicas/química , Interacciones Hidrofóbicas e Hidrofílicas , Agua
5.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768573

RESUMEN

Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a ß-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.


Asunto(s)
Plumbaginaceae , Plumbaginaceae/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas
6.
J Fungi (Basel) ; 10(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248935

RESUMEN

Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.

7.
Microorganisms ; 10(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35456803

RESUMEN

Filamentous fungi are a large and diverse taxonomically group of microorganisms found in all habitats worldwide. They grow as a network of cells called hyphae. Since filamentous fungi live in very diverse habitats, they produce different enzymes to degrade material for their living, for example hydrolytic enzymes to degrade various kinds of biomasses. Moreover, they produce defense proteins (antimicrobial peptides) and proteins for attaching surfaces (hydrophobins). Many of them are easy to cultivate in different known setups (submerged fermentation and solid-state fermentation) and their secretion of proteins and enzymes are often much larger than what is seen from yeast and bacteria. Therefore, filamentous fungi are in many industries the preferred production hosts of different proteins and enzymes. Edible fungi have traditionally been used as food, such as mushrooms or in fermented foods. New trends are to use edible fungi to produce myco-protein enriched foods. This review gives an overview of the different kinds of proteins, enzymes, and peptides produced by the most well-known fungi used as cell factories for different purposes and applications. Moreover, we describe some of the challenges that are important to consider when filamentous fungi are optimized as efficient cell factories.

8.
Fungal Genet Biol ; 160: 103683, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278684

RESUMEN

Fusarium graminearum is the causal agent of Fusarium head blight in cereal crops. As in other filamentous ascomycetes, F. graminearum contains genes encoding putative hydrophobins, which are small secreted amphiphilic proteins with eight conserved cysteine residues. Here, we investigated the roles of all five hydrophobin genes (designated FgHyd1, FgHyd2, FgHyd3, FgHyd4, and FgHyd5) in various mycological traits of F. graminearum. Gene expression analyses revealed that the five FgHyd genes, all of which were under the control of G protein signaling or velvet complex proteins, were differentially expressed under various developmental conditions. Three genes (FgHyd1, FgHyd2, and FgHyd3) were constitutively expressed in all aerial structures examined (hyphae, conidia, and perithecia), and two genes (FgHyd1 and FgHyd2) were also expressed in submerged hyphae. FgHyd3 was exclusively expressed in aerial hyphae on solid surfaces, including rice grains. These genes showed markedly reduced expression in F. asiaticum, which was a closely related to F. graminearum but exhibited different mycological traits from F. graminearum. Phenotypic analyses of various gene deletion strains, including the quintuple deletion (ΔFgHyd12345) strain, confirmed that in addition to their typical functions, all five FgHyd genes were involved in other traits, such as conidiation, pathogenicity, and secondary metabolism in F. graminearum. Both RNA-seq and chemical analyses confirmed that ΔFgHyd led to overproduction of specific terpenoid compounds (e.g., trichothecenes), which has not been reported previously. Nevertheless, the lack of complete phenotypic loss of any of the traits examined, even in the ΔFgHyd12345 strain, and little cumulative action of all five FgHyd genes strongly suggest that all five hydrophobins are redundant in function and are not absolutely essential for these fungal traits in F. graminearum.


Asunto(s)
Fusarium , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Metabolismo Secundario/genética , Esporas Fúngicas
9.
Bio Protoc ; 11(10): e4019, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34150926

RESUMEN

Cell-free synthesis is a powerful technique that uses the transcriptional and translational machinery extracted from cells to create proteins without the constraints of living cells. Here, we report a cell-free protein production protocol using Escherichia coli lysate (Figure 1) to successfully express a class of proteins (known as hydrophobins) with multiple intramolecular disulphide bonds which are typically difficult to express in a soluble and folded state in the reducing environments found inside a cell. In some cases, the inclusion of a recombinant disulphide isomerase DsbC further enhances the expression levels of correctly folded hydrophobins. Using this protocol, we can achieve milligram levels of protein expression per ml of reaction. While our target proteins are the fungal hydrophobins, it is likely that this protocol with some minor variations can be used to express other proteins with multiple intramolecular disulphide bonds in a natively folded state. Graphic abstract: Figure 1.Workflow for cell-free protein expression and single-step purification using affinity chromatography. A. E. coli S30 lysate prepared as described in Apponyi et al. (2008) can be stored for up to several years at -80°C without any loss of activity in our experience. B. The S30 lysate, plasmid DNA that encodes for the protein of interest along with an affinity tag and components required for transcription and translation are added to the reaction mix. Following a single-step protein purification, the protein of interest can be isolated for further use.

10.
Front Plant Sci ; 12: 674015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135929

RESUMEN

Visceral leishmaniasis is a Neglected Tropical Disease of high mortality caused by the protozoan Leishmania infantum. Its transmission cycle is complex, and it has in the domestic dog its main reservoir. The diagnostic tests currently used rely on prokaryotic systems' proteins, but their low sensitivity increases the disease's burden. The plant transient expression of recombinant proteins allows the production of complex antigens. However, this system has limited competitiveness against the bacterial production of purified antigens. Thus, we have shown that the L. infantum K39 antigen's fusion to a hydrophobin allows its production for diagnostic tests without the need for intensive purification. The sera of naturally infected dogs specifically detect the semi-purified rK39-HFBI protein. The test validation against a panel of 158 clinical samples demonstrates the platform's viability, resulting in sensitivity and specificity of 90.7 and 97.5%, respectively. Thus, the use of semi-purified antigens fused to hydrophobins can become the standard platform for large-scale antigens production to expand diagnostic tests for other human and veterinary diseases worldwide.

11.
Microbiol Res ; 247: 126723, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33636611

RESUMEN

Hydrophobins are small secreted proteins with important physiological functions and potential applications. Here, Pleurotus ostreatus hydrophobin genes were systematically analyzed: they were characterized, classified, and their expression profiles and gene functions were explored. In total, 40 P. ostreatus hydrophobin genes were found and showed genetic diversity, of which 15 were newly identified. The hydrophobin protein sequences were diverse but all contained eight cysteine residues with a conserved spacing pattern, and 33 of them were class I hydrophobins. The expression profile analyses showed that Vmh3 and Hydph20 were abundant in monokaryotic and dikaryotic mycelia, whereas Hydph17, Po.hyd16, Hydph8 were specifically expressed in monokaryotic mycelia and Po.hyd10 were specific in dikaryotic mycelia. Furthermore, Vmh3, Hydph20, Po.hyd7, and Po.hyd10 were abundant when dikaryotic mycelia cultivated on PDA, which are different from on substrate (Vmh2, Vmh3, Hydph7, Po.hyd3, Po.hyd7, Po.hyd9); Hydph12, POH1, and Po.hyd4 can be induced by natural light and cold stimulation during development from mycelia to primordia; Vmh3, FBH1, Hydph12, Po.hyd1-Po.hyd5, and Po.hyd8 were highly expressed in primordia and young fruiting bodies; Hydph12, Po.hyd1, Po.hyd4, and Po.hyd5 were specifically expressed in pilei. In addition, RNAi transformants of FBH1 exhibited slower growth rates and had fewer primordia and fruiting bodies, which suggests FBH1 affects the growth rate and primordia formation of P. ostreatus. Therefore, P. ostreatus hydrophobin genes belong to a large family and are temporally and spatially expressed to meet the developmental needs of mushroom.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Genes Fúngicos/genética , Pleurotus/crecimiento & desarrollo , Pleurotus/genética , Agaricales/genética , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Variación Genética , Crecimiento y Desarrollo , Fenotipo , Filogenia , Pleurotus/metabolismo , Transcriptoma
12.
Protein Expr Purif ; 182: 105834, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33516827

RESUMEN

Hydrophobins are a class of small cysteine rich surface active proteins produced exclusively by filamentous fungi. It forms a nano layer in the cell-water interface, thereby protecting the emerging fungal hyphae from surrounding water. Even though hydrophobins have similar functions in fungi, they share less sequence similarity. In the current study, we made a comparative study of the hydrophobin produced by the mushroom Pleurotus floridanus (PfH). Mushroom P. floridanus was cultured in PD broth. The hydrophobin was purified by foam fractionation and characterized in terms of molecular weight, solubility and glycosylation. In the RP-HPLC analysis, the hydrophobin eluted at a retention time of 45.56 min. The molecular weight of the PfH was found to be 13.52 kDa by MALDI-TOF MS and the LC-MS/MS showed no similar sequence in MASCOT database. The hydrophobin gene of P. floridanus was amplified using custom-designed primers and the BLAST analysis showed 80% sequence similarity with the Vmh2-1 gene of Pleurotus ostreatus. The sequence was translated into protein using ExPASy, secondary and tertiary structure predictions were carried out using Jpred4 and Phyre2. The tertiary structure showed 91.5% similarity with the HYD1 hydrophobin of Schizophyllum commune. A comparative study of PfH with Vmh2-1 and HYD1 was performed using bioinformatics tools. Hydrophobic cluster analysis revealed that three of these proteins have uniformity in terms of amphiphilic and non-amphiphilic α-helices, whereas PfH has a unique proline clustering. Physicochemical analysis by ProtParam revealed that PfH shares similar properties with HYD1 and Vmh2-1, which can be correlated with its function.


Asunto(s)
Proteínas Fúngicas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Pleurotus/química , Pleurotus/genética , Pleurotus/metabolismo
13.
Mol Cell Biochem ; 476(4): 1939-1948, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33502649

RESUMEN

Menaquinone-7 is involved in bone metabolism and can be used to prevent and treat osteoporosis. However, as a fat-soluble vitamin, menaquinone-7 has poor water solubility. As a surfactant, hydrophobins can change the affinity/hydrophobicity of the covered interface. In this study, menaquinone-7 was modified by hydrophobins, and the different addition ratios were explored. Moreover, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements indicated that hydrophobins effectively bind to menaquinone-7 and greatly increase the hydrophilicity of the surface of menaquinone-7. Studies on the metabolism of MC3T3-E1 cells showed that compared with native menaquinone-7, HGFI-modified menaquinone-7 can significantly promote osteoblast differentiation but inhibit osteoclast differentiation. Besides, the Mito-Tracker Green experiments show that HGFI-modified menaquinone-7 can significantly promote the activity of mitochondria in cells. These findings indicate that hydrophobins can be used as an effective biomaterial to modify menaquinone-7, promote the formation of osteoblasts, and better to bone balance.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos , Nanopartículas/química , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Vitamina K 2/análogos & derivados , Animales , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Ratones , Osteoblastos/citología , Vitamina K 2/química , Vitamina K 2/farmacología
14.
Int J Biol Macromol ; 165(Pt A): 1296-1302, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33002537

RESUMEN

Hydrophobins are small amphipathic proteins excreted from filamentous fungi that self-assemble into the amphipathic film at hydrophobic/hydrophilic interfaces and can be used in a wide range of biotechnological application such as antimicrobial coatings, biosensors, and drug delivery. Here we describe a simple method for producing functionally active class I and class II hydrophobins in E. coli. The class I hydrophobin EAS (rodlet protein) from Neurospora crassa and class II hydrophobin HFBII from Trichoderma reesei were separately fused with fusion partner Ffu312 (ß-fructofuranosidase truncation with a native signal peptide) and successfully expressed in E. coli. Significantly, fused hydrophobins Ffu312-EAS and Ffu312-HFBII were excreted into the culture medium. The excretory expression of hydrophobins facilitated the correct disulfide-bond formation and simplified the purification. Both fusion hydrophobins reversed the glass surface hydrophilicity, reduced the water surface tension and improved emulsion stability. Ffu312 has little effect on surface coating, water surface tension and emulsion stabilization of hydrophobins. This study may provide an efficient approach for excretory and functional expression of class I and class II hydrophobins in E. coli.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Tensoactivos/química , Antiinfecciosos/química , Técnicas Biosensibles , Sistemas de Liberación de Medicamentos , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Hypocreales/química , Hypocreales/genética , Neurospora crassa/química , Neurospora crassa/genética , Propiedades de Superficie/efectos de los fármacos , Tensión Superficial/efectos de los fármacos , Agua/química
15.
Biosens Bioelectron ; 165: 112262, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32510337

RESUMEN

The continually growing use of glyphosate and its critically discussed health and biodiversity risks ask for fast, low cost, on-site sensing technologies for food and water. To address this problem, we designed a highly sensitive sensor built on the remarkably specific recognition of glyphosate by its physiological target enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs). This principle is implemented in an interferometric sensor by using the recently established soft colloidal probe (SCP) technique. EPSPs was site-specifically immobilized on a transparent surface utilizing the self-assembling properties of circadian clock gene 2 hydrophobin chimera and homogeneity of the layer was evidenced by atomic force microscopy. Exposure of the enzyme decorated biochip to glyphosate containing samples causes formation of enzyme-analyte complexes and a competitive loss of available binding sites for glyphosate-functionalized poly(ethylene glycol) SCPs. Functionalization of the SCPs with different types of linker molecules and glyphosate was assessed employing confocal laser scanning microscopy as well as confocal Raman microspectroscopy. Overall, reflection interference contrast microscopy analysis of SCP-biochip interactions revealed a strong influence of linker length and glyphosate coupling position on the sensitivity of the sensor. In employing a combination of pentaglycine linker and tethering glyphosate via its secondary amino group, concentrations in aqueous solutions down to 100 pM could be measured by the differential adhesion between SCP and biochip surface, supported by automated image analysis algorithms. This sensing concept could even prove its exceptional pM sensitivity in combination with a superior discrimination against structurally related compounds.


Asunto(s)
Técnicas Biosensibles , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferasa , Biomimética , Glicina/análogos & derivados , Glifosato
16.
J Colloid Interface Sci ; 573: 384-395, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32298932

RESUMEN

Hydrophobins are small, secreted amphiphilic proteins produced by filamentous fungi. Due to their charming ability to self-assemble at different interfaces, several efforts have been made in recent years to produce hydrophobins at a large scale for industrial applications. However, producing soluble and functional hydrophobins in bacterial expression systems is challenging because all hydrophobins contain eight conserved cysteine residues, resulting in the formation of inclusion bodies. Here, two cysteine mutants for both class I and class II hydrophobins were successfully produced in Escherichia coli in soluble form. Subsequent experiments systematically demonstrated that those two mutants preserved the ability to self-assemble at water-water, air-water and oil-water interfaces similarly to native hydrophobins. We also found that disulfide bridges differently influenced the self-assembly of hydrophobins. They were not involved in the self-assembly of the class I hydrophobin HGFI, but directly affected the self-assembly of the class II hydrophobin HFBI. Our study demonstrated that the bacterial expression system was suitable for producing soluble and functional hydrophobin mutants, which have the potential to replace native hydrophobins produced in other complicated production systems.


Asunto(s)
Bacillus subtilis/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie
17.
Cells ; 9(3)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106416

RESUMEN

(1) Background: Mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains and few studies in basidiomycete fungi. These studies have been conducted in settings where cells are subjected to stress, either hypo- or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. (2) Methods: We have studied transcriptomic changes in Aspergillussydowii, a halophilic species, when growing in three different salinity conditions (No NaCl, 0.5 M, and 2.0 M NaCl). (3) Results: In this fungus, major physiological modifications occur under high salinity (2.0 M NaCl) and not when cultured under optimal conditions (0.5 M NaCl), suggesting that most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions. Cell wall modifications occur exclusively at extreme salinity, with an increase in cell wall thickness and lamellar structure, which seem to involve a decrease in chitin content and an augmented content of alfa and beta-glucans. Additionally, three hydrophobin genes were differentially expressed under hypo- or hyperosmotic stress but not when the fungus grows optimally. Regarding compatible solutes, glycerol is the main compound accumulated in salt stress conditions, whereas trehalose is accumulated in the absence of salt. (4) Conclusions: Physiological responses to salinity vary greatly between optimal and high salt concentrations and are not a simple graded effect as the salt concentration increases. Our results highlight the influence of stress in reshaping the response of extremophiles to environmental challenges.


Asunto(s)
Hongos/química , Estrés Fisiológico/fisiología , Hongos/citología , Humanos , Salinidad
18.
Methods Mol Biol ; 2073: 55-72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31612436

RESUMEN

The fungal hydrophobins are small proteins that are able to self-assemble spontaneously into amphipathic monolayers at hydrophobic:hydrophilic interfaces. These protein monolayers can reverse the wettability of a surface, making them suitable for increasing the biocompatibility of many hydrophobic nanomaterials. One subgroup of this family, the class I hydrophobins, forms monolayers that are composed of extremely robust amyloid-like fibrils, called rodlets. Here, we describe the protocols for the production and purification of recombinant hydrophobins and oxidative refolding to a biologically active, soluble, monomeric form. We describe methods to trigger the self-assembly into the fibrillar rodlet state and techniques to characterize the physicochemical properties of the polymeric forms.


Asunto(s)
Proteínas Fúngicas/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/química
19.
Molecules ; 24(20)2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635143

RESUMEN

The search for possible alternatives to traditional flame retardants (FRs) is pushing the academic and industrial communities towards the design of new products that exhibit low environmental impact and toxicity, notwithstanding high performances, when put in contact with a flame or exposed to an irradiative heat flux. In this context, in the last five to ten years, the suitability and effectiveness of some biomacromolecules and bio-sourced products with a specific chemical structure and composition as effective flame retardants for natural or synthetic textiles has been thoroughly explored at the lab-scale level. In particular, different proteins (such as whey proteins, caseins, and hydrophobins), nucleic acids and extracts from natural sources, even wastes and crops, have been selected and exploited for designing flame retardant finishing treatments for several fibers and fabrics. It was found that these biomacromolecules and bio-sourced products, which usually bear key elements (i.e., nitrogen, phosphorus, and sulphur) can be easily applied to textiles using standard impregnation/exhaustion methods or even the layer-by-layer technique; moreover, these "green" products are mostly responsible for the formation of a stable protective char (i.e., a carbonaceous residue), as a result of the exposure of the textile substrate to a heat flux or a flame. This review is aimed at summarizing the development and the recent progress concerning the utilization of biomacromolecules/bio-sourced products as effective flame retardants for different textile materials. Furthermore, the existing drawbacks and limitations of the proposed finishing approaches as well as some possible further advances will be considered.


Asunto(s)
Fibra de Algodón , Retardadores de Llama , Calor , Proteína de Suero de Leche/química
20.
Gene ; 706: 84-90, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31028867

RESUMEN

Flammulina filiformis is an edible fungus that is largely cultivated and widely consumed around the world. The quantity and quality of the primordia, which gives rise to the fruiting body, affects its production efficiency. Hydrophobins are involved in the formation of the fruiting body of macrofungi. However, functional verification of the hydrophobin genes is limited to date. In this study, we used gene silencing and overexpression analyses to investigate the function of one F. filiformis hydrophobin gene (Hyd9) during the development of the fruiting body. The Hyd9-silenced transformants exhibited sparse aerial hyphae, resulting in fewer primordia and fruiting bodies. In contrast, the Hyd9 overexpression strain displayed denser aerial hyphae and more primordia. The phenotypes of these transgenic lines strongly suggested that Hyd9 plays an important role in the formation of aerial hyphal knots (the primary stage of primordia) and primordia in F. filiformis. These results will be beneficial for developing more efficient methods to induce primordia formation in F. filiformis and other commercially valuable mushrooms.


Asunto(s)
Flammulina/genética , Regulación Fúngica de la Expresión Génica/genética , Hifa/genética , Cuerpos Fructíferos de los Hongos/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA