Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125005

RESUMEN

Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn2+ ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76-0.95, RMSE = 0.34-0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand-receptor interactions, represent important information to support the design of new and potent hCA II inhibitors.


Asunto(s)
Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica , Unión Proteica , Ligandos , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Humanos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Termodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Sulfonamidas/química , Sulfonamidas/farmacología , Metaloproteínas/química , Metaloproteínas/antagonistas & inhibidores , Metaloproteínas/metabolismo , Modelos Moleculares , Aprendizaje Automático , Bencenosulfonamidas , Sitios de Unión
2.
Gels ; 10(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39057467

RESUMEN

Hydrogels endure various dynamic stresses, demanding robust mechanical properties. Despite significant advancements, matching hydrogels' strength to biological tissues and plastics is often challenging without applying potentially harmful crosslinkers. Using hydrogen bonds as sacrificial bonds offers a promising strategy to produce tough, versatile hydrogels for biomedical and industrial applications. Poly(methacrylic acid) (PMA)/gelatin hydrogels were synthesized by thermally induced free-radical polymerization and crosslinked only by physical bonds, without adding any chemical crosslinker. The addition of gelatin increased the formation of hydrophobic domains in the structure of the hydrogels, which acted as permanent crosslinking points. The increase in PMA and gelatin contents generally led to a lower equilibrium water content (WC), higher thermal stability and better mechanical properties. The values of tensile strength and toughness reached up to 1.44 ± 0.17 MPa and 4.91 ± 0.51 MJ m-3, respectively, while the compressive modulus and strength reached up to 0.75 ± 0.06 MPa and 24.81 ± 5.85 MPa, respectively, with the WC being higher than 50 wt.%. The obtained values for compressive mechanical properties are comparable with super-strong hydrogels reported in the literature. In addition, hydrogels exhibited excellent fatigue resistance and biocompatibility, as well as great shape memory properties, which make them prominent candidates for a wide range of biomedical applications.

3.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999080

RESUMEN

External interfaces, such as the air-water and solid-liquid interfaces, are ubiquitous in nature. Hydrophobic interactions are considered the fundamental driving force in many physical and chemical processes occurring in aqueous solutions. It is important to understand the effects of external interfaces on hydrophobic interactions. According to the structural studies on liquid water and the air-water interface, the external interface primarily affects the structure of the topmost water layer (interfacial water). Therefore, an external interface may affect hydrophobic interactions. The effects of interfaces on hydrophobicity are related not only to surface molecular polarity but also to the geometric characteristics of the external interface, such as shape and surface roughness. This study is devoted to understanding the effects of a smooth interface on hydrophobicity. Due to hydrophobic interactions, the solutes tend to accumulate at external interfaces to maximize the hydrogen bonding of water. Additionally, these can be demonstrated by the calculated potential mean forces (PMFs) using molecular dynamic (MD) simulations.

4.
Molecules ; 29(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38893477

RESUMEN

According to our recent studies on hydrophobicity, this work is aimed at understanding the dependence of hydrophobic interactions on the shape of a solute's surface. It has been observed that dissolved solutes primarily affect the structure of interfacial water, which refers to the top layer of water at the interface between the solute and water. As solutes aggregate in a solution, hydrophobic interactions become closely related to the transition of water molecules from the interfacial region to the bulk water. It is inferred that hydrophobic interactions may depend on the shape of the solute surface. To enhance the strength of hydrophobic interactions, the solutes tend to aggregate, thereby minimizing their surface area-to-volume ratio. This also suggests that hydrophobic interactions may exhibit directional characteristics. Moreover, this phenomenon can be supported by calculated potential mean forces (PMFs) using molecular dynamics (MD) simulations, where different surfaces, such as convex, flat, or concave, are associated with a sphere. Furthermore, this concept can be extended to comprehend the molecular packing parameter, commonly utilized in studying the self-assembly behavior of amphiphilic molecules in aqueous solutions.

5.
Food Chem ; 456: 139687, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38889496

RESUMEN

Enzymatic hydrolysis prior to protein fibrillation was an effective way to facilitate the formation of nanofibrils. This study aimed to investigate the effects of molecular weights of hydrolysate on the kinetics, structures, and interactions of soy protein isolate (SPI) hydrolysate nanofibrils. The results showed that hydrolysate with molecular weight > 10 kDa showed a distinct fibrillation kinetics curve and a higher apparent rate constant (27.72) during fibrillation, indicating their vital role in determining the fibrillation. Hydrolysate with molecular weight > 10 kDa could form nanofibrils with higher radius gyration (17.11 ± 0.77 Å) due to stronger hydrophobic interaction, showing a stronger fibrillation ability. Hydrolysate with molecular weight within 5-10 kDa exhibited enhanced π-π stacking interactions during fibrillation, thereby promoting the extension of nanofibrils, and contributing to the formation of more nanofibrils. Hydrolysate with molecular weight < 5 kDa tended to randomly aggregate during fibrillation, resulting in a significant loss of cross-ß structures in nanofibrils. Therefore, hydrolysate with different molecular weights exhibited synergistic effects during fibrillation.


Asunto(s)
Peso Molecular , Nanofibras , Hidrolisados de Proteína , Proteínas de Soja , Proteínas de Soja/química , Hidrolisados de Proteína/química , Nanofibras/química , Cinética , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas
6.
Mol Pharm ; 21(6): 2878-2893, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767457

RESUMEN

Understanding the interplay between kinetics and thermodynamics of polymer-mediated liquid-liquid phase separation is crucial for designing and implementing an amorphous solid dispersion formulation strategy for poorly water-soluble drugs. This work investigates the phase behaviors of a poorly water-soluble model drug, celecoxib (CXB), in a supersaturated aqueous solution with and without polymeric additives (PVP, PVPVA, HPMCAS, and HPMCP). Drug-polymer-water ternary phase diagrams were also constructed to estimate the thermodynamic behaviors of the mixtures at room temperature. The liquid-liquid phase separation onset point for CXB was detected using an inline UV/vis spectrometer equipped with a fiber optic probe. Varying CXB concentrations were achieved using an accurate syringe pump throughout this study. The appearance of the transient nanodroplets was verified by cryo-EM and total internal reflection fluoresence microscopic techniques. The impacts of various factors, such as polymer composition, drug stock solution pumping rates, and the types of drug-polymer interactions, are tested against the onset points of the CXB liquid-liquid phase separation (LLPS). It was found that the types of drug-polymer interactions, i.e., hydrogen bonding and hydrophobic interactions, are vital to the position and shapes of LLPS in the supersaturation drug solution. A relation between the behaviors of LLPS and its location in the CXB-polymer-water ternary phase diagram was drawn from the findings.


Asunto(s)
Celecoxib , Polímeros , Solubilidad , Termodinámica , Agua , Polímeros/química , Agua/química , Celecoxib/química , Cinética , Química Farmacéutica/métodos , Transición de Fase , Separación de Fases
7.
Int J Cosmet Sci ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733167

RESUMEN

When undertaking any review of the structure of the hair and its mechanical properties it becomes apparent that the overall behaviour of keratin fibres is commonly attributed to the presence of hydrogen, disulfide and ionic bonds. The action of physico-chemical agents used during various cosmetic treatments is viewed as the result of an interaction with these bonds. Thus, the breaking of bonds by chemical agents, or via mechanical or thermal stresses, affects the relative balance of disulfide and hydrogen bonds and the contribution of hydrophobic interactions, which are all important factors that may alter hair behaviour. Generally, these chemical bonds are considered as responding homogeneously to the environmental and cosmetic factors. This unitary image is challenged, however, by evaluating the results of chemical, nanomechanical, tensile and thermal measurements, which suggest that disulfide bonds may be grouped into several types, according to their location within the fibre and the way they respond to various agents. A compensatory effect of newly formed hydrogen bonds for broken disulfide bonds may also be seen, and additionally involves different types of hydrogen bonds. As a result, the picture of chemical bonding in hair appears to be far from a homogeneous one. In addition, it is apparent that further investigation is required for clarifying the action of ionic bonds and hydrophobic interactions within the hair fibre. The present review aims, thus, at offering a deeper background for understanding how the hair behaves under various conditions.


Comme l'indique l'étude de la littérature réalisée dans le cadre de cette revue, le comportement général des fibres kératiniques est généralement attribué à la présence de liaisons hydrogène, disulfure et ioniques. L'action des agents physico­chimiques utilisés au cours de divers traitements cosmétiques est alors considérée comme le résultat d'une interaction avec ces liaisons. Ainsi, la rupture des liaisons par des agents chimiques, ou par des contraintes mécaniques ou thermiques, affecte l'équilibre relatif des liaisons disulfure et hydrogène et la contribution des interactions hydrophobes, qui sont autant de facteurs importants susceptibles d'altérer le comportement du cheveu. En général, on considère que ces liaisons chimiques réagissent de manière homogène aux facteurs environnementaux et cosmétiques. Cette image unitaire est toutefois remise en question par l'évaluation des résultats des mesures chimiques, nanomécaniques, thermiques et de traction, qui suggèrent que les liaisons disulfures peuvent être regroupées en plusieurs types, en fonction de leur emplacement dans la fibre et de la manière dont elles réagissent aux différents agents. Un effet compensatoire des liaisons hydrogène nouvellement formées pour les liaisons disulfures rompues peut également être observé et implique en outre différents types de liaisons hydrogène. Par conséquent, l'image de la liaison chimique dans les cheveux est loin d'être homogène. En outre, il est évident que des recherches supplémentaires sont nécessaires pour clarifier l'action des liaisons ioniques et des interactions hydrophobes au sein de la fibre capillaire. La présente étude vise donc à offrir une base pour une compréhension plus approfondie du comportement du cheveu dans diverses conditions.

8.
Gels ; 10(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38667666

RESUMEN

Low-salt surimi production is crucial as it addresses health concerns related to sodium intake while maintaining the quality and shelf-life of seafood products. This research focused on optimizing the gelation conditions for silver carp surimi with the addition of psyllium husk powder at low salt concentrations (0.5% and 1%, w/w) to investigate the effects of psyllium husk powder concentration, temperature, and time on gel strength and water-holding capacity. The quality was assessed in terms of gel strength and water-holding capacity. Following a single-factor exploration, a three-level orthogonal experiment was designed to evaluate the influence of these three variables using a combined scoring system. Results indicated that psyllium husk powder levels between 0.1% and 0.3% (w/w) enhanced gel strength and water-holding capacity. The optimal conditions were identified as follows: 1% (w/w) NaCl with 0.2% (w/w) psyllium husk powder for 2.5 h at 35 °C, and 0.5% (w/w) NaCl with 0.3% (w/w) psyllium husk powder for 3 h at 35 °C. Texture profile analysis revealed that psyllium husk powder increased the hardness of the surimi gel, promoting myosin cross-linking and denser gel structure. Compared to traditional surimi gel, which relies on ionic bonds, the optimized gel showed higher levels of disulfide cross-linking and enhanced hydrophobic interactions, resulting in a stronger gel structure. Sensory evaluation suggested that surimi gels with psyllium husk powder were perceived as better than those without psyllium husk powder. The study concludes that selecting the appropriate psyllium husk powder quantity and thermal processing conditions based on salt concentration can significantly improve the quality of low-salt surimi gels. Error analysis using one-way ANOVA was performed on all experimental data and (p < 0.05) indicated the significant difference.

9.
Small ; : e2402570, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682735

RESUMEN

Molecular self-assembly has attracted much attention as a potential approach for fabricating nanostructured functional materials. To date, energy-efficient fabrication of nano-objects such as nanofibers, nanorings, and nanotubes is achieved using well-designed self-assembling molecules. However, the application of molecular self-assembly to industrial manufacturing processes remains challenging because regulating the positions and directions of self-assembled products is difficult. Non-covalent molecular assemblies are also too fragile to allow mechanical handling. The present work demonstrates the macroscopic alignment of self-assembled molecular fibers using compression. Specifically, the macroscopic bundling of self-assembled nanofibers is achieved following dispersion in water. These fiber bundles can also be chemically crosslinked without drastic changes in morphology via trialkoxysilyl groups. Subsequently, vertically oriented porous membranes can be produced rapidly by slicing the bundles. This technique is expected to be applicable to various functional self-assembled fibers and can lead to the development of innovative methods of producing anisotropic nanostructured materials.

10.
Eur J Pharm Biopharm ; 198: 114261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490349

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is a life-saving cardiopulmonary bypass technology for critically ill patients with heart and lung failure. Patients treated with ECMO receive a range of drugs that are used to treat underlying diseases and critical illnesses. However, the dosing guidelines for these drugs used in ECMO patients are unclear. Mortality rate for patients on ECMO exceeds 40% partly due to inaccurate dosing information, caused in part by the adsorption of drugs in the ECMO circuit and its components. These drugs range in hydrophobicity, electrostatic interactions, and pharmacokinetics. Propofol is commonly administered to ECMO patients and is known to have high adsorption rates to the circuit components due to its hydrophobicity. To reduce adsorption onto the circuit components, we used micellar block copolymers (Poloxamer 188TM and Poloxamer 407TM) and liposomes tethered with poly(ethylene glycol) to encapsulate propofol, provide a hydrophilic shell and prevent its adsorption. Size, polydispersity index (PDI), and zeta potential of the delivery systems were characterized by dynamic light scattering, and encapsulation efficiency was characterized using High Performance Liquid Chromatography (HPLC). All delivery systems used demonstrated colloidal stability at physiological conditions for seven days, cytocompatibility with a human leukemia monocytic cell line, i.e., THP-1 cells, and did not activate the complement pathway in human plasma. We demonstrated a significant reduction in adsorption of propofol in an in-vitro ECMO model upon encapsulation in micelles and liposomes. These results show promise in reducing the adsorption of hydrophobic drugs to the ECMO circuits by encapsulation in nanoscale structures tethered with hydrophilic polymers on the surface.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Propofol , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Adsorción , Liposomas , Corazón , Enfermedad Crítica/terapia
11.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475269

RESUMEN

It has been shown that there exist conditions under which thermosensitive copolymers of N-vinylpyrrolidone with methyl acrylate form hydrophobic-hydrophilic associations, which are unstable dynamic meshes, the bonds in which are continuously broken and created again, and the nature of the formation of such meshes depends significantly on the proportion of the hydrophobic component in the copolymer. It is shown that the interaction of the above copolymers with polyacrylic acid results in the formation of not only classical interpolymer complexes, but also hydrophilic interpolymer associates, which also represent unstable networks existing in a dynamic mode. In such meshes, the molecules of the above copolymers serve as a kind of cross-agent connecting the polyacid molecules. There are also conditions under which such meshes acquire a complex structure, since unstable bonds between macromolecular tangles of both the same and different types take part in their formation. It is shown that the transition from the formation of interpolymer complexes to the formation of hydrophilic interpolymer associates can occur, among other things, due to changes in the acidity or concentration of low-molecular salt in solution.

12.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398605

RESUMEN

Ion channels exhibit strong selectivity for specific ions over others under electrochemical potentials, such as KcsA for K+ over Na+. Based on the thermodynamic analysis, this study is focused on exploring the mechanism of ion selectivity in nanopores. It is well known that ions must lose part of their hydration layer to enter the channel. Therefore, the ion selectivity of a channel is due to the rearrangement of water molecules when entering the nanopore, which may be related to the hydrophobic interactions between ions and channels. In our recent works on hydrophobic interactions, with reference to the critical radius of solute (Rc), it was divided into initial and hydrophobic solvation processes. Additionally, the different dissolved behaviors of solutes in water are expected in various processes, such as dispersed and accumulated distributions in water. Correspondingly, as the ion approaches the nanopore, there seems to exist the "repulsive" or "attractive" forces between them. In the initial process (

13.
Food Chem ; 438: 138030, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38000155

RESUMEN

Plastein reaction mechanisms and the alteration of its product properties have been studied for decades. This study investigated the plastein-mediated modifications in silver carp protein hydrolysate (SCPH) from both mechanistic and functional perspectives. Unlike prior research, this investigation uncovered that hydrogen bonding supplemented the dominant hydrophobic interactions in plastein's mechanism for the first time, as supported by peptide concentrations, molecular weight, amino acids, chemical forces, and peptide sequence by LC-MS/MS. This innovative reaction mechanism cascaded into the enhancement of SCPH functional attributes. Plastein induced increased COOH in SCPH's side-chain groups significantly enhanced Fe2+ (from 4.49 to 14.12 %) and Zn2+ (from 53.53 to 64.47 %) chelation. Moreover, the elevated DPPH (17.56 %-23.97 %) and hydroxyl radical (68.49 %-79.32 %) scavenging power indicated a broader improvement in SCPH with plastein. In SCPH, plastein elucidated reaction intricacies and enhanced its utility, propelling SCPH into a realm of extended potential.


Asunto(s)
Carpas , Hidrolisados de Proteína , Animales , Hidrolisados de Proteína/química , Carpas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/química , Quelantes
14.
Environ Res ; 241: 117680, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37980984

RESUMEN

Considerable amount of produced water discharged by the oil industry contributes to an environmental imbalance due to the presence of several components potentially harmful to the ecosystem. We investigated the factors influencing the adsorption capacity of Zinc Imidazolate Framework-8 (ZIF-8) in finite bath systems for crude oil removal from petroleum extraction in synthetic produced water. ZIF-8, experimentally obtained by solvothermal method, was characterized by XRD, FTIR, TGA, BET and its point of zero charge (pHpcz) was determined. Synthesized material showed high crystallinity, with surface area equal to 1558 m2 g-1 and thermal stability equivalent to 400 °C. Adsorption tests revealed, based on the Sips model, that the process takes place in a heterogeneous system. Additionally, intraparticle diffusion model exhibited multilinearity characteristics during adsorption process. Thermodynamic investigation demonstrated that adsorption process is spontaneous and exothermic, indicating a physisorption phenomenon. These properties enable the use of ZIF-8 in oil adsorption, which presented an adsorption capacity equal to 452.9 mg g-1. Adsorption mechanism was based on hydrophobic interactions, through apolar groups present on ZIF-8 structure and oil hydrocarbons, and electrostatic interactions, through the difference in charges between positive surface of adsorbent and negatively charged oil droplets.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Ecosistema , Contaminantes Químicos del Agua/química , Agua/química , Termodinámica , Adsorción
15.
Biomolecules ; 13(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38136604

RESUMEN

Cytochrome P450 monooxygenases (CYPs; P450s) are a superfamily of heme-containing enzymes that are recognized for their vast substrate range and oxidative multifunctionality. CYP107 family members perform hydroxylation and epoxidation processes, producing a variety of biotechnologically useful secondary metabolites. Despite their biotechnological importance, a thorough examination of CYP107 protein structures regarding active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 44 CYP107 crystal structures were investigated in this study. We demonstrate that the CYP107 active site cavity is very flexible, with ligand binding reducing the volume of the active site in some situations and increasing volume size in other instances. Polar interactions between the substrate and active site residues result in crucial salt bridges and the formation of proton shuttling pathways. Hydrophobic interactions, however, anchor the substrate within the active site. The amino acid residues within the binding pocket influence substrate orientation and anchoring, determining the position of the hydroxylation site and hence direct CYP107's catalytic activity. Additionally, the amino acid dynamics within and around the binding pocket determine CYP107's multifunctionality. This study serves as a reference for understanding the structure-function analysis of CYP107 family members precisely and the structure-function analysis of P450 enzymes in general. Finally, this work will aid in the genetic engineering of CYP107 enzymes to produce novel molecules of biotechnological interest.


Asunto(s)
Aminoácidos , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Oxidación-Reducción , Dominio Catalítico , Aminoácidos/metabolismo , Especificidad por Sustrato
16.
Proteins ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828826

RESUMEN

Protein domains are structural, functional, and evolutionary units. These domains bring out the diversity of functionality by means of interactions with other co-existing domains and provide stability. Hence, it is important to study intra-protein inter-domain interactions from the perspective of types of interactions. Domains within a chain could interact over short timeframes or permanently, rather like protein-protein interactions (PPIs). However, no systematic study has been carried out between two classes, namely permanent and transient domain-domain interactions. In this work, we studied 263 two-domain proteins, belonging to either of these classes and their interfaces on the basis of several factors, such as interface area and details of interactions (number, strength, and types of interactions). We also characterized them based on residue conservation at the interface, correlation of residue motions across domains, its involvement in repeat formation, and their involvement in particular molecular processes. Finally, we could analyze the interactions arising from domains in two-domain monomeric proteins, and we observed significant differences between these two classes of domain interactions and a few similarities. This study will help to obtain a better understanding of structure-function and folding principles of multi-domain proteins.

17.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830785

RESUMEN

Interprotein interactions between the partially unfolded states of γD-crystallin (γD-crys) protein are known to cause cataracts. Therefore, understanding the unfolding pathways of native γD-crys is extremely crucial to delineate their aggregation mechanism. In this study, we have performed extensive all-atom Molecular Dynamics simulations with explicit solvent to understand the role of the critical residues that drive the stability of the motifs and domains of γD-crys in its wild type and mutant forms. Our findings show that while the individual motifs of wild type are not stable in the native form, the individual domains remain structurally stable at 425K. This enhanced stability of the domain was attributed to the hydrophobic interactions between the motifs. Single and double point mutations of the domains with negatively charged aspartic and glutamic acid amino acid residues (I3E, W42D, W42E, I3D/W42D, I3E/W42E, and L92D/W157D) decreases the structural stability, leading to unfolding of individual domains of γD-crys. We believe that our study sheds light on the weakest links of γD-crys, along with the role of interactions stabilizing the domains. Further, this study bolsters and provides a better understanding of the domain swapping mechanism of aggregation of γD-crys.Communicated by Ramaswamy H. Sarma.

18.
Chempluschem ; 88(10): e202300257, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37708459

RESUMEN

Tau and α-synuclein are proteins involved in pathologies known as tauopathies and synucleinopathies, respectively. Moreover, evidence shows that there is a crosstalk between them as is seen in the brains of individuals with sporadic neurodegenerative disorders. Based on that, we present data showing that the hydrophobic α-peptide 71 VTGVTAVAQKTV82 induces the aggregation of the full-length tau fragment in the absence of heparin assessed by ThT. Moreover, AFM images reveal the presence of straight filaments and amorphous aggregates of full-length tau in the presence of the α-peptide. Additionally, ITC experiments showed the interaction of the α-peptide with tau full-length (441 amino acids),4R (amino acids from 244 to 369), and both hexapeptides 275 VQIINK280 and 306 VQIVYK311 through hydrophobic interactions. The Raman spectroscopy spectra showed conformational changes in the Amide region in the aggregates formed with full-length tau and α-syn peptide. Furthermore, the incubation of extracellular aggregates with N2a cells showed morphological differences in the cellular body and the nucleus suggesting cell death. Moreover,, the incubation of different types of aggregates in cell culture provokes the release of Lactate dehydrogenase (LDH). Altogether, we found that α-synuclein peptide can drive the aggregation of full-length tau-provoking morphological and structural changes evoking cytotoxic effects.


Asunto(s)
alfa-Sinucleína , Proteínas tau , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Péptidos , Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas
19.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37688204

RESUMEN

Utilizing turbidimetry data, an examination is conducted on the behavior of solutions containing N-vinylpyrrolidone and vinyl propyl ether copolymer within a temperature range coinciding with the occurrence of a phase transition. The investigation reveals that within specific conditions prevailing in this domain, the emergence of entities denoted as hydrophobic-hydrophilic associates is conceivable. These entities are characterized by the presence of a relatively dense core, upheld by hydrophobic interplays, and they are proficient in effectively dispersing irradiation within the optical spectrum. Encircling this core is a hydrophilic periphery that impedes the formation of insoluble precipitates. The development of such associates transpires when hydrophobic interactions have attained a discernible prominence, although they remain inadequate to counteract the forces that drive the expansion of macromolecular coils. Under these circumstances, the energetically favored course of action entails the constitution of a core for the aforementioned associates, involving discrete segments from diverse macromolecules. Notably, the introduction of an additional constituent (ethanol) to the solution, which selectively mitigates hydrophobic interactions, serves to stabilize the hydrophobic-hydrophilic associations.

20.
Sci Total Environ ; 905: 166764, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37660805

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA