Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Biol Macromol ; 278(Pt 4): 135053, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187101

RESUMEN

A continuing challenge in the most common biodegradable polyester of poly(l-lactide) (PLLA) is to improve the degradation rate in the environment, though it has been widely used in packaging and medical applications. In this study, PLLA/poly(ether-block-amide) (PEBA) blends are prepared by melt blending to investigate the effect of PEBA component on the phase morphology, thermal behavior, mechanical properties, and hydrolytic degradation of the blends. The incorporation of PEBA component is beneficial to the improved toughness and increased water absorption of the blends, and accelerated hydrolytic degradation of PLLA. The blend exhibits the optimal mechanical and hydrolytic degradation properties when the blend mass ratio of PLLA/PEBA is 80/20. The toughness of the blend is increased by 390 % compared to that of pure PLLA. After being hydrolyzed at 58 °C for 240 h, the water absorption, the mass loss and the decrease of molecular weight of the blend is increased by 138 %, 160 % and 40 %, respectively, indicating faster hydrolytic degradation rate of the blend than that of pure PLLA. Furthermore, the accelerated hydrolytic degradation mechanism of PLLA in the blend is revealed. The amorphous region of PLLA is hydrolyzed initially at the phase interface of the blend, and subsequently the crystalline structure of PLLA is degraded. The hydrolysis process causes a change in the relative content of crystalline regions in the system, resulting in an increase in crystallinity of PLLA first and then decrease. These findings provide a new strategy for the design of novel degradable PLLA materials for practical applications.


Asunto(s)
Poliésteres , Poliésteres/química , Hidrólisis , Peso Molecular , Agua/química , Temperatura
2.
Dent Mater ; 40(8): 1097-1112, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811272

RESUMEN

OBJECTIVES: This study evaluated the impact of mutable water uptake on the durability of mechanical properties and the long-term reliability of artificial composites. METHODS: Three resin-based CAD/CAM restorative materials (CRMs) were investigated in three-point bending tests to calculate flexural strength (FS), modulus of elasticity (ME), modulus of resilience (MR), modulus of toughness (MT), and elastic recovery (ER). All specimens (n = 180) were stored under the same conditions and tested in four subsets (n = 15 per material) that were respectively withdrawn after repeated thermocycling (5000 cycles; 5-55 °C, H2O) and repetitive drying (7 d; 37 °C, air). For every specimen, weight differences were determined per storage condition. Likewise, loss tangent data were separately recorded via dynamic mechanical analysis to reliably assess damping characteristics. RESULTS: Repeated thermocycling always induced weight increase and a concurrent significant loss in all mechanical properties except for MT and ER of a polymethylmethacrylate-based CRM. Drying consistently provoked weight loss and raised mechanical properties to initial values. Weight increase, however, enhanced loss tangent values and accordingly distinct damping characteristics, whereas weight decrease markedly lowered damping properties. SIGNIFICANCE: Water uptake repeatedly induced a decrease in common mechanical properties but concurrently increased damping behavior. Invertible equilibrium processes were found with no evidence for permanent material degradation.


Asunto(s)
Resinas Compuestas , Resistencia Flexional , Ensayo de Materiales , Agua , Resinas Compuestas/química , Agua/química , Módulo de Elasticidad , Análisis del Estrés Dental , Materiales Dentales/química , Polimetil Metacrilato/química , Metacrilatos/química
3.
Materials (Basel) ; 17(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473515

RESUMEN

The application of biobased and biodegradable polymers, such as polylactide (PLA), in fused deposition modeling (FDM) 3D-printing technology creates a new prospect for rapid prototyping and other applications in the context of ecology. The popularity of the FDM method and its significance in material engineering not only creates new prospects for the development of technical sciences on an industrial scale, but also introduces new technologies into households. In this study, the kinetics of the hydrolytic degradation of samples obtained by the FDM method from commercially available PLA filaments under a thermally accelerated regime were analyzed. The investigation was conducted at the microstructural, supramolecular, and molecular levels by using methods such as micro-computed tomography (micro-CT), wide-angle X-ray diffraction (WAXD), viscosimetry, and mass erosion measurements. The obtained results clearly present the rapid structural changes in 3D-printed materials during degradation due to their amorphous initial structure. The complementary studies carried out at different scale levels allowed us to demonstrate the relationship between the observed structural changes in the samples and the hydrolytic decomposition of the polymer chains, which made it possible to scientifically understand the process and expand the knowledge on biodegradation.

4.
Polymers (Basel) ; 16(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38399884

RESUMEN

Commercially available poly(lactic acid) exhibits poor hydrolytic stability, which makes it impossible for use in durable applications. Therefore, a novel hydrolysis inhibitor based on an aziridine derivative as well as a novel stabilizer composition, containing an aziridine derivative and an acid scavenger, were investigated to improve the hydrolytic stability. To evaluate the stabilizing effect, the melt volume rate (MVR) and molecular weight were monitored during an accelerated hydrolytic aging in water at elevated temperatures. Temperatures were selected according to the glass transition temperature (~60 °C) of PLA. It was shown that the novel hydrolysis inhibitor as well as the novel stabilizer composition exhibited excellent performance during hydrolytic aging, exceeding commercially available alternatives, e.g., polymeric carbodiimides. A molecular weight analysis resulted in a molecular weight decrease of only 10% during approximately 850 h and up to 20% after 1200 h of hydrolytic aging, whereas poly(lactic acid) stabilized with a commercial polycarbodiimide revealed comparable molecular weight reductions after only 300 h. Furthermore, the stabilization mechanism of the aziridine derivative alone, as well as in the synergistic combination with the acid scavenger (calcium hydrotalcite), was investigated using nuclear magnetic resonance (NMR) spectroscopy. In addition to an improved hydrolytic stability, the thermal properties were also enhanced compared to polymeric carbodiimides.

5.
Chemosphere ; 350: 141186, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215833

RESUMEN

Increased use of bioplastics, such as polylactic acid (PLA), helps in reducing greenhouse gas emissions, decreases energy consumption and lowers pollution, but its degradation efficiency has much room for improvement. The degradation rate of electrospun PLA fibers of varying diameters ranging from 0.15 to 1.33 µm is measured during hydrolytic degradation under different pH from 5.5 to 10, and during aerobic biodegradation in seawater supplemented with activated sewage sludge. In hydrolytic conditions, varying PLA fiber diameter had significant influence over percentage weight loss (W%L), where faster degradation was achieved for PLA fibers with smaller diameter. W%L was greatest for PLA-5 > PLA-12 > PLA-16 > PLA-20, with average W%L at 30.7%, 27.8%, 17.2% and 14.3% respectively. While different pH environment does not have a significant influence on PLA degradation, with W%L only slightly higher for basic environments. Similarly biodegradation displayed faster degradation for small diameter fibers with PLA-5 attaining the highest degree of biodegradation at 22.8% after 90 days. Hydrolytic degradation resulted in no significant structural change, while biodegradation resulted in significant hydroxyl end capping products on the PLA surface. Scanning electron microscopy (SEM) imaging of degraded PLA fibers showed a deteriorated morphology of PLA-5 and PLA-12 fibers with increased adhesion structures and irregularly shaped fibers, while a largely unmodified morphology for PLA-16 and PLA-20.


Asunto(s)
Poliésteres , Poliésteres/química , Hidrólisis , Microscopía Electrónica de Rastreo
6.
Aust Dent J ; 69(2): 124-138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38131257

RESUMEN

BACKGROUND: Clinical practitioners may have become familiar with the rapid transformation of dental composites. However, they may not scientifically understand the factors influencing the mechanical and physical properties. Scientific knowledge of filler-resin interaction can significantly improve clinical understanding of resin composites. Several independent studies have examined the mechanical and physico-mechanical properties of dental resin composites; however, no comprehensive study has examined the influence of fillers and resin materials on the physico-mechanical properties of both self-cure and dual-cure composites. METHODS: This study performed investigations on the physico-mechanical behaviour of four commercially available dual-cure dental composites (Bioactive, Fill Up!, Surefil One, Cention N) and two commercially available self-cure dental composites (Stela Capsule and Stela Automix). Test specimens for flexural and compressive strength, microhardness, fracture toughness, and hydrolytic behaviour were prepared and tested as per respective standards. The data sets were statistically analysed using one-way ANOVA and Tukey's post-hoc comparison. RESULTS: There was a substantial variation in flexural strength and modulus values in this study, ranging from 32.0 to 113.4 MPa and 2.36 to 12.07 GPa, respectively. Similarly, there were significant differences in compressive strength between the materials in this study, ranging from 119.3 to 223.5 MPa. The highest fracture toughness value was found to be 1.41 MPa.m0.5, while the lowest value was 0.43 MPa.m0.5. Variations in surface microhardness were significant (24.11-68.0 N/mm2), which correlated with the filler content. Water sorption and solubility demonstrated high variations among materials, with Surefil One exceeding ISO 4049 thresholds significantly. CONCLUSIONS: A linear correlation can be established between surface microhardness (HV) and flexural and compressive moduli, as well as filler content (wt.%). However, both flexural and compressive strengths are impacted by the resin's constituent monomers and the resin-filler matrix's cross-linking capability. Additionally, factors such as filler size, shape, and the cross-linking ability of the resin-filler matrix play a crucial role in fracture toughness and the propagation of cracks within the restoration. Also, resin monomers and filler particle size affect the hydrolytic degradation characteristics of composites, which can also affect their mechanical properties. © 2023 Australian Dental Association.


Asunto(s)
Resinas Compuestas , Ensayo de Materiales , Resinas Compuestas/química , Resistencia Flexional , Dureza , Fuerza Compresiva , Análisis del Estrés Dental
7.
Polymers (Basel) ; 15(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836066

RESUMEN

The degradation of polylactide (PLA) films of different structures under conditions of controlled composting has been studied. We have demonstrated that PLA underwent degradation within one month in a substrate that simulated standard industrial composting. Regardless of the initial structure of the samples, the number-average molecular weight (Mn) decreased to 4 kDa while the degree of crystallinity increased to about 70% after 21 days of composting. Addition of an inoculant to the standard substrate resulted in the accelerated degradation of the PLA samples for one week due to an abiotic hydrolysis. These findings have confirmed that industrial composting could solve the problem of plastic disposal at least for PLA.

8.
J Chromatogr A ; 1710: 464405, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37769426

RESUMEN

Polysorbate 80 is widely used as a formulation component in biopharmaceutical drug products. Recent studies have shown that polysorbate 80 is readily degraded either through direct or indirect means. The degradation of polysorbate 80 causes a concern for the long-term stability of biopharmaceutical drug product, as the breakdown products of polysorbate 80 have been shown to cause adverse effects, such as formation of sub-visible and visible particles and mAb aggregation. Understanding the path and extent of degradation is of a paramount importance for the formulator during formulation development. A multi-detector HPLC system using charged aerosol and mass detection was developed and optimized for the characterization of polysorbate 80 standards. The system included a post-column make-up flow, i.e. an inverse gradient, that enabled constant eluent composition at the detectors. The inverse gradient eliminated the main source of variability for the charged aerosol detector response, thereby enabling the calculation of the mass balance between polysorbate components with different degrees of esterification. Extracted ion chromatograms of the mass detector combined with their respective retention times were used to qualitatively characterize the polysorbate samples down to the individual components. The system was applied to study the degradation of several polysorbate standards which occurred by enzymatic digestion or long-term storage. The system provided detailed information on the mechanism of degradation without the need for additional orthogonal analytical techniques.

9.
Angew Chem Int Ed Engl ; 62(38): e202309526, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37522648

RESUMEN

Hydrolytically degradable block copolymer nanoparticles are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous media. This efficient protocol involves the reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethylacrylamide (DMAC) using a monofunctional or bifunctional trithiocarbonate-capped poly(ϵ-caprolactone) (PCL) precursor. DMAC monomer is employed as a co-solvent to solubilize the hydrophobic PCL chains. At an intermediate DMAC conversion of 20-60 %, the reaction mixture is diluted with water to 10-25 % w/w solids. The growing amphiphilic block copolymer chains undergo nucleation to form sterically-stabilized PCL-core nanoparticles with PDMAC coronas. 1 H NMR studies confirm more than 99 % DMAC conversion while gel permeation chromatography (GPC) studies indicate well-controlled RAFT polymerizations (Mw /Mn ≤1.30). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) indicate spheres of 20-120 nm diameter. As expected, hydrolytic degradation occurs within days at 37 °C in either acidic or alkaline solution. Degradation is also observed in phosphate-buffered saline (PBS) (pH 7.4) at 37 °C. However, no degradation is detected over a three-month period when these nanoparticles are stored at 20 °C in deionized water (pH 6.7). Finally, PDMAC30 -PCL16 -PDMAC30 nanoparticles are briefly evaluated as a dispersant for an agrochemical formulation based on a broad-spectrum fungicide (azoxystrobin).

10.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241958

RESUMEN

The inclusion of fluorine motifs in drugs and drug delivery systems is an established tool for modulating their biological potency. Fluorination can improve drug specificity or boost the vehicle's ability to cross cellular membranes. However, the approach has yet to be applied to vaccine adjuvants. Herein, the synthesis of fluorinated bioisostere of a clinical stage immunoadjuvant-poly[di(carboxylatophenoxy)phosphazene], PCPP-is reported. The structure of water-soluble fluoropolymer-PCPP-F, which contains two fluorine atoms per repeat unit-was confirmed using 1H, 31P and 19F NMR, and its molecular mass and molecular dimensions were determined using size-exclusion chromatography and dynamic light scattering. Insertion of fluorine atoms in the polymer side group resulted in an improved solubility in acidic solutions and faster hydrolytic degradation rate, while the ability to self-assemble with an antigenic protein, lysozyme-an important feature of polyphosphazene vaccine adjuvants-was preserved. In vivo assessment of PCPP-F demonstrated its greater ability to induce antibody responses to Hepatitis C virus antigen when compared to its non-fluorinated counterpart. Taken together, the superior immunoadjuvant activity of PCPP-F, along with its improved formulation characteristics, demonstrate advantages of the fluorination approach for the development of this family of macromolecular vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos , Flúor , Adyuvantes Inmunológicos/química , Adyuvantes de Vacunas , Polímeros/química , Compuestos Organofosforados/química
11.
Polymers (Basel) ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112077

RESUMEN

In the work, the impact of the biological medium and water on structural rearrangements in pure polylactide and polylactide/natural rubber film composites was studied. Polylactide/natural rubber films with a rubber content of 5, 10, and 15 wt.% were obtained by the solution method. Biotic degradation was carried out according to the Sturm method at a temperature of 22 ± 2 °C. Hydrolytic degradation was studied at the same temperature in distilled water. The structural characteristics were controlled by thermophysical, optical, spectral, and diffraction methods. Optical microscopy revealed the surface erosion of all samples after exposure to microbiota and water. Differential scanning calorimetry showed a decrease in the degree of crystallinity of polylactide by 2-4% after the Sturm test, and a tendency to an increase in the degree of crystallinity after the action of water was noted. Changes in the chemical structure were shown in the spectra recorded by infrared spectroscopy. Due to degradation, significant changes in the intensities of the bands in the regions of 3500-2900 and 1700-1500 cm-1 were shown. The X-ray diffraction method established differences in diffraction patterns in very defective and less damaged regions of polylactide composites. It was determined that pure polylactide hydrolyzed more readily under the action of distilled water than polylactide/natural rubber composites. Film composites were more rapidly subjected to biotic degradation. The degree of biodegradation of polylactide/natural rubber composites increased with the rise in the content of natural rubber in the compositions.

12.
Nanomaterials (Basel) ; 13(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37049377

RESUMEN

Plasticized nanocomposites based on poly(lactic acid) have been prepared by melt mixing following a two-step approach, adding two different oligomeric esters of lactic acid (OLAs) as plasticizers and fumed silica nanoparticles. The nanocomposites maintained a remarkable elongation at break in the presence of the nanoparticles, with no strong effects on modulus and strength. Measuring thermo-mechanical properties as a function of aging time revealed a progressive deterioration of properties, with the buildup of phase separation, related to the nature of the plasticizer. Materials containing hydroxyl-terminated OLA showed a higher stability of properties upon aging. On the contrary, a synergistic effect of the acid-terminated plasticizer and silica nanoparticles was pointed out, inducing an accelerated hydrolytic degradation of PLA: materials at high silica content exhibited a marked brittleness and a dramatic decrease of molecular weight after 16 weeks of aging.

13.
Pharmaceutics ; 15(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36986675

RESUMEN

This work presents a computational model to study the degradation behavior of polyester-based three-dimensional (3D) functionalized scaffolds for bone regeneration. As a case study, we investigated the behavior of a 3D-printed scaffold presenting a functionalized surface with ICOS-Fc, a bioactive protein able to stimulate bone regeneration and healing, inhibiting osteoclast activity. The aim of the model was to optimize the scaffold design to control its degradation and thus the release of grafted protein over time and space. Two different scenarios were considered: (i) a scaffold without macroporosity presenting a functionalized external surface; and (ii) a scaffold presenting an internal functionalized macroporous architecture with open channels to locally deliver the degradation products.

14.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36987214

RESUMEN

The goal of this work was to investigate the morphological and chemical-physical changes induced by adding ZnO nanoparticles to bio-based polymeric materials based on polylactic acid (PLA) and polyamide 11 (PA11). Precisely, the photo- and water-degradation phenomena of nanocomposite materials were monitored. For this purpose, the formulation and characterization of novel bio-nanocomposite blends based on PLA and PA11 at a ratio of 70/30 wt.% filled with zinc oxide (ZnO) nanostructures at different percentages were performed. The effect of ZnO nanoparticles (≤2 wt.%) within the blends was thoroughly explored by employing thermogravimetry (TGA), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and scanning and transmission electron microscopy (SEM and TEM). Adding up to 1% wt. of ZnO resulted in a higher thermal stability of the PA11/PLA blends, with a decrement lower than 8% in terms of molar masses (MMs) values being obtained during blend processing at 200 °C. ZnO promoted trans-ester-amide reactions between the two polymers, leading to the formation of PLA/PA11 copolymers. These species could work as compatibilisers at the polymer interface, improving thermal and mechanical properties. However, the addition of higher quantities of ZnO affected such properties, influencing the photo-oxidative behaviour and thus thwarting the material's application for packaging use. The PLA and blend formulations were subjected to natural aging in seawater for two weeks under natural light exposure. The 0.5% wt. ZnO sample induced polymer degradation with a decrease of 34% in the MMs compared to the neat samples.

15.
Expert Opin Drug Deliv ; 20(2): 175-187, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36588456

RESUMEN

INTRODUCTION: Messenger ribonucleic acid (mRNA) and small interfering RNA (siRNA) are biological molecules that can be heated, frozen, lyophilized, precipitated, or re-suspended without degradation. Currently, ionizable lipid nanoparticles (LNPs) are a promising approach for mRNA therapy. However, the long-term shelf-life stability of mRNA-ionizable LNPs is one of the open questions about their use and safety. At an acidic pH, ionizable lipids shield anionic mRNA. However, the stability of mRNA under storage conditions remains a mystery. Moreover, ionizable LNPs excipients also cause instability during long-term storage. AREA COVERED: This paper aims to illustrate why mRNA-ionizable LNPs have such a limited storage half-life. For the first time, we compile the tentative reasons for the short half-life and ultra-cold storage of mRNA-LNPs in the context of formulation excipients. The article also provided possible ways of prolonging the lifespan of mRNA-ionizable LNPs during long storage. EXPERT OPINION: mRNA-ionizable LNPs are the future of genetic medicine. Current limitations of the formulation can be overcome by an advanced drying process or a whole new hybrid formulation strategy to extend the shelf life of mRNA-ionizable LNPs. A breakthrough technology may open up new research directions for producing thermostable and safe mRNA-ionizable LNPs at room temperature.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , Excipientes , Liposomas , ARN Interferente Pequeño/genética , Nanopartículas/química , ARN Mensajero/genética
16.
Bull Exp Biol Med ; 174(1): 99-103, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36437338

RESUMEN

We studied the features of hydrolytic degradation of polylactic acid (PLLA) implants depending on their structural filling with hydroxyapatite (HA). The resistance to in vitro hydrolysis was tested for the following samples: PLLA without HA (control; group 1), PLLA/HA 25 wt% (group 2), and PLLA/HA 50 wt% (group 3). Samples were incubated at 37°C. In the hydrolysate, lactate, calcium ions, and inorganic phosphate were determined. Additionally, the time of appearance of visual deformation and sample disintegration was recorded. PLLA degradation was higher in samples saturated with HA. The highest resistance to deformation was noted for samples without HA. Samples with a PLLA/HA 50 wt% demonstrated the maximum degradation of PLLA in combination with lower resistance to deformation and the highest bioavailability of calcium and phosphate. Group 2 samples are most promising for clinical use.


Asunto(s)
Calcio , Durapatita
17.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080272

RESUMEN

The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties.


Asunto(s)
Adhesivos , Metacrilatos , Resinas Compuestas/química , Hidrólisis , Ensayo de Materiales , Metacrilatos/química , Polimerizacion , Agua/química
18.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142380

RESUMEN

Composites based on polylactide (PLA) and hydroxyapatite (HA) were prepared using a thermally induced phase separation method. In the experimental design, the PLA with low weight-average molar mass (Mw) and high Mw were tested with the inclusion of HA synthesized as whiskers or hexagonal rods. In addition, the structure of HA whiskers was doped with Zn, whereas hexagonal rods were mixed with Sr salt. The composites were sterilized and then incubated in phosphate-buffered saline for 12 weeks at 37 °C, followed by characterization of pore size distribution, molecular properties, density and mechanical strength. Results showed a substantial reduction of PLA Mw for both polymers due to the preparation of composites, their sterilization and incubation. The distribution of pore size effectively increased after the degradation process, whereas the sterilization, furthermore, had an impact on pore size distribution depending on HA added. The inclusion of HA reduced to some extent the degradation of PLA quantitatively in the weight loss in vitro compared to the control without HA. All produced materials showed no cytotoxicity when validated against L929 mouse skin fibroblasts and hFOB 1.19 human osteoblasts. The lack of cytotoxicity was accompanied by the immunocompatibility with human monocytic cells that were able to detect pyrogenic contaminants.


Asunto(s)
Durapatita , Poliésteres , Animales , Materiales Biocompatibles/química , Fuerza Compresiva , Durapatita/química , Humanos , Ensayo de Materiales , Ratones , Poliésteres/química , Polímeros/química , Esterilización
19.
Polymers (Basel) ; 14(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015567

RESUMEN

A mixed oxide of titania-silica oxides (TixSiy oxides) was successfully prepared via the sol-gel technique from our previous work. The use of TixSiy oxides to improve the mechanical properties, photocatalytic efficiency, antibacterial property, permeability tests, and biodegradability of polylactic acid (PLA) was demonstrated in this study. The influence of different types and contents of TixSiy oxides on crystallization behavior, mechanical properties, thermal properties, and morphological properties was presented. In addition, the effect of using TixSiy oxides as a filler in PLA composites on these properties was compared with the use of titanium dioxide (TiO2), silicon dioxide (SiO2), and TiO2SiO2. Among the prepared biocomposite films, the PLA/TixSiy films showed an improvement in the tensile strength and Young's modulus (up to 5% and 31%, respectively) in comparison to neat PLA films. Photocatalytic efficiency to degrade methylene blue (MB), hydrolytic degradation, and in vitro degradation of PLA are significantly improved with the addition of TixSiy oxides. Furthermore, PLA with the addition of TixSiy oxides exhibited an excellent antibacterial effect on Gram-negative bacteria (Escherichia coli or E. coli) and Gram-positive bacteria (Staphylococcus aureus or S. aureus), indicating the improved antimicrobial effectiveness of PLA composites. Importantly, up to 5% TixSiy loading could promote more PLA degradation via the water absorption ability of mixed oxides. According to the research results, the PLA composite films produced with TixSiy oxide were transparent, capable of screening UV radiation, and exhibited superior antibacterial efficacy, making them an excellent food packaging material.

20.
Int J Pharm ; 625: 122113, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35973592

RESUMEN

Dual-jet electrospinning was employed to produce two-component, partially degradable drug releasing nonwovens with interlacing of poly(D,L-lactide-co-glycolide) (PDLGA) and different poly(carbonate urethanes) (PCUs). Diclofenac sodium and sirolimus were released simultaneously from the copolyester carrier. The research focused on determining of release profiles of drugs, depending on the hydrophilicity of introduced PCU nanofibers. The influence of drugs incorporation on the hydrolytic degradation of the PDLGA and mechanical properties of nonwovens was also studied. Evaluation for interaction with cells in vitro was investigated on a fibroblast cell line in cytotoxicity and surface adhesion tests. Significant changes in drugs release rate, depending on the applied PCU were observed. It was also noticed, that hydrophilicity of drugs significantly influenced the hydrolytic degradation mechanism and surface erosion of the PDLGA, as well as the tensile strength of nonwovens. Tests carried out on cells in an in vitro experiment showed that introduction of sirolimus caused a slight reduction in the viability of fibroblasts as well as a strong limitation in their capability to colonize the surface of fibers. Due to improvement of mechanical strength and the ability to controlled drugs release, the obtained material may be considered as prospect surgical mesh implant in the treatment of hernia.


Asunto(s)
Antiinfecciosos/administración & dosificación , Antiinflamatorios no Esteroideos/administración & dosificación , Diclofenaco/administración & dosificación , Nanofibras/administración & dosificación , Sirolimus/administración & dosificación , Mallas Quirúrgicas , Preparaciones de Acción Retardada , Materiales Dentales , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA