RESUMEN
This study aimed to optimize the ultrasound-assisted extraction (UAE) of anthocyanins from oven-dried and freeze-dried Vitis labrusca grape pomace, using acidified water as the solvent. The effects of power density (8.3-16.7 W/mL), pulse interval (0-2 s), and extraction time (1-5 min) on both total and specific anthocyanins were investigated. The findings suggested that acidified water can be a viable alternative to conventional solvents and that oven drying was an effective method for drying the pomace. Using response surface methodology, the study identified power density and extraction time as key factors influencing total anthocyanin content, with extracts reaching contents up to 2.56 mg/g. The analysis using LC-MS identified 14 anthocyanins, while NMR quantified 3 and malvidin diglucoside was generally the most abundant. However, higher power and longer extraction times were found to reduce its content while increasing malvidin monoglucoside content, suggesting ultrasound-induced anthocyanin hydrolysis. In conclusion, this study presents a sustainable method for extracting anthocyanins using acidified water, contributing to the valorization of Vitis labrusca grape pomace for industrial use.
Asunto(s)
Antocianinas , Vitis , Agua , Antocianinas/análisis , Antocianinas/aislamiento & purificación , Vitis/química , Agua/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Ultrasonido/métodos , Frutas/química , Solventes/química , LiofilizaciónRESUMEN
Amidst increasing awareness of diet-health relationships, plant-derived bioactive peptides are recognized for their dual nutritional and health benefits. This study investigates bioactive peptides released after Alcalase hydrolysis of protein from chachafruto (Erythrina edulis), a nutrient-rich South American leguminous plant, focusing on their behavior during simulated gastrointestinal digestion. Evaluating their ability to scavenge radicals, mitigate oxidative stress, and influence immune response biomarkers, this study underscores the importance of understanding peptide interactions in digestion. The greatest contribution to the antioxidant activity was exerted by the low molecular weight peptides with ORAC values for the <3 kDa fraction of HES, GD-HES, and GID-HES of 0.74 ± 0.03, 0.72 ± 0.004, and 0.56 ± 0.01 (µmol TE/mg protein, respectively). GD-HES and GID-HES exhibited immunomodulatory effects, promoting the release of NO up to 18.52 and 8.58 µM, respectively. The findings of this study highlighted the potential of chachafruto bioactive peptides in functional foods and nutraceuticals, supporting human health through dietary interventions.
Asunto(s)
Antioxidantes , Digestión , Erythrina , Péptidos , Proteínas de Plantas , Hidrólisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Péptidos/química , Péptidos/metabolismo , Erythrina/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Subtilisinas/metabolismo , Subtilisinas/química , Estrés Oxidativo , Tracto Gastrointestinal/metabolismoRESUMEN
In the context of biorefinery, researchers have been looking for lignocellulosic biomasses and ideal treatments to produce economically viable biofuels. In this scenario, the bamboo culm appears as a plant matrix of great potential, given the high cellulose content of low crystallinity. Thus, the objective and differential of this work was to determine the best conditions for enzymatic hydrolysis of cellulose extracted from bamboo culm and to evaluate its potential application in the production of bioethanol through Separate Hydrolysis and Fermentation (SHF) and Saccharification and Simultaneous Fermentation (SSF) by Saccharomyces cerevisiae modified via CRISPR/Cas9. The average cellulose extraction yield was 41.87 % with an extraction efficiency of 86.76 %. In general, as the hydrolysis time increased, an increase in glucose production was observed in almost all assays, with higher hydrolysis efficiency values at 72 h. The results ranged from 2.09 to 19.8 g/L of glucose obtained with efficiency values of 10.47 to 99 %. The best conditions were found in test 5 (temperature of 36 °C and pH 5.0, with only 10 FPU/g of substrate Cellic Ctec2 Novozymes ® cocktail). It is observed that for all hydrolysis times the independent variables pH and temperature were significant under the hydrolysis efficiency, showing a negative effect, indicating that higher values of the same promote lower values of the response variable. For bioethanol production, a maximum concentration of 7.84 g/L was observed for the SSH process after 4 h of fermentation, while for the SSF process it was 12.6 g/L after 24 h of fermentation, indicating the large potential of the simultaneous process together with the application of bamboo culm biomass for high production of biofuel.
Asunto(s)
Biocombustibles , Sistemas CRISPR-Cas , Celulosa , Etanol , Fermentación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Hidrólisis , Celulosa/metabolismo , Etanol/metabolismo , Celulasa/metabolismo , Sasa , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , BiomasaRESUMEN
The hydrothermal pretreatment process stands out as a pivotal step in breaking down the hemicellulosic fraction of lignocellulosic biomasses, such as sugarcane bagasse and eucalyptus sawdust. This pretreatment step is crucial for preparing these materials for subsequent processes, particularly in food applications. This technique aims to disintegrate plant wall components like cellulose, hemicellulose, and lignin, and facilitating access in later phases such as enzymatic hydrolysis, and ultimately making fermentable sugars available. In this study, sugarcane bagasse and eucalyptus sawdust biomass underwent hydrothermal pretreatment at specific conditions, yielding two key components: dry biomass and hemicellulose liquor. The primary focus was to assess the impact of hydrothermal pretreatment followed by enzymatic hydrolysis, using the Celic Ctec III enzyme cocktail, to obtain fermentable sugars. These sugars were then transformed into membranes via strain Gluconacetobacter xylinus bacterial biosynthesis. Notably, the addition of a nitrogen source significantly boosted production to 14.76 g/ in hydrolyzed sugarcane bagasse, underscoring its vital role in bacterial metabolism. Conversely, in hydrolyzed eucalyptus, nitrogen source inclusion unexpectedly decreased yield, highlighting the intricate interactions in fermentation media and the pivotal influence of nitrogen supplementation. Characterization of membranes obtained in synthetic and hydrolyzed media through techniques such as FEG-SEM, FTIR, and TGA, followed by mass balance assessment, gauged their viability on an industrial scale. This comprehensive study aimed not only to understand the effects of pretreatment and enzymatic hydrolysis but to also evaluate the applicability and sustainability of the process on a large scale, providing crucial insights into its feasibility and efficiency in practical food-related scenarios, utilizing nanocellulose bacterial (BNC) as a key component.
Asunto(s)
Biomasa , Celulosa , Eucalyptus , Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Celulosa/química , Celulosa/metabolismo , Hidrólisis , Eucalyptus/química , Saccharum/química , Fermentación , Gluconacetobacter xylinus/metabolismo , Polisacáridos/química , Polisacáridos/metabolismoRESUMEN
Human hair, composed primarily of keratin, represents a sustainable waste material suitable for various applications. Synthesizing keratin nanoparticles (KNPs) from human hair for biomedical uses is particularly attractive due to their biocompatibility. In this study, keratin was extracted from human hair using concentrated sulfuric acid as the hydrolysis agent for the first time. This process yielded KNPs in both the supernatant (KNPs-S) and precipitate (KNPs-P) phases. Characterization involved scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Zeta potential analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TG). KNPs-S and KNPs-P exhibited average diameters of 72 ± 5 nm and 27 ± 5 nm, respectively. The hydrolysis process induced a structural rearrangement favoring ß-sheet structures over α-helices in the KNPs. These nanoparticles demonstrated negative Zeta potentials across the pH spectrum. KNPs-S showed higher cytotoxicity (CC50 = 176.67 µg/mL) and hemolytic activity, likely due to their smaller size compared to KNPs-P (CC50 = 246.21 µg/mL), particularly at concentrations of 500 and 1000 µg/mL. In contrast, KNPs-P did not exhibit hemolytic activity within the tested concentration range of 32.5 to 1000 µg/mL. Both KNPs demonstrated cytocompatibility with fibroblast cells in a dose-dependent manner. Compared to other methods reported in the literature and despite requiring careful washing and neutralization steps, sulfuric acid hydrolysis proved effective, rapid, and feasible for producing cytocompatible KNPs (biomaterials) in single-step synthesis.
RESUMEN
BACKGROUND: Protein-derived peptide fractions can play a key role in the physiological and metabolic regulation and modulation of the body, which suggests that they could be used as functional ingredients to improve health and to reduce the risk of disease. This work aimed to evaluate the in vitro antithrombotic and anticariogenic bioactivity of hydrolysates and protein fractions obtained from cowpea (Vigna unguiculata) by biocatalysis. RESULTS: Cowpea protein concentrate was hydrolyzed by sequential action with two enzyme systems, Pepsin-Pancreatin or Alcalase-Flavourzyme. There was extensive enzymatic hydrolysis, with degrees of hydrolysis of 34.94% and 81.43% for Pepsin-Pancreatin and Alcalase-Flavourzyme, respectively. The degree of hydrolysis for the control treatments, without the addition of the enzymes Pepsin-Pancreatin and Alcalase-Flavourzyme was 1.1% and 1.2%, respectively. The hydrolysates were subjected to fractionation by ultrafiltration, with five cut-off points according to molecular weight (<1, 1-3, 3-5, 5-10 and >10 kDa). The Alcalase-Flavourzyme hydrolysate led to 100% inhibition of platelet aggregation, while the Pepsin-Pancreatin hydrolysate showed 77.41% inhibition, but this was approximately 100% in the ultrafiltered fractions. The highest anticariogenic activity was obtained with the Pepsin-Pancreatin system, with 61.55% and 56.07% for calcium and phosphorus demineralization, respectively. CONCLUSION: Hydrolysates and their peptide fractions from Vigna unguiculata exhibited inhibition of platelet aggregation and protection of tooth enamel and have the potential for use in the development of functional products with beneficial health effects. © 2024 Society of Chemical Industry.
RESUMEN
Corncob is an agro-residue rich in lignocellulosic material that can be used for the xylitol production, through its enzymatic conversion obtaining fermentable sugars and their subsequent fermentation. In light of the above, this study targeted the immobilization of Aspergillus labruscus xylanase and the use of the derivative to hydrolyze the corncob xylan for the obtainment of xylose, and its subsequent use for the production of xylitol. The extracellular xylanase was immobilized using different supports (sodium alginate, DEAE-Cellulose, DEAE-Sephadex and CM-Sephadex). Among all supports used, the best results were obtained with the DEAE-Cellulose derivative showing an efficiency of immobilization of 97-99%, yield of 93-95% and recovered activity of 81-100%. The sodium alginate derivative showed 3 cycles of reuse, with drop in activity of about 65% in the 3rd cycle using both CaCl2 and MnCl2 as crosslinkers. The best enzymatic activity for the DEAE-Cellulose derivative was observed at 55ºC and pH 5.0. This derivative presented reuse of 10 cycles using commercial xylan as substrate, and 4 cycles using corncob xylan. This derivative was used in an enzymatic reactor to hydrolyze corncob xylan, obtaining 2.7 mg/mL of xylose after 48 h of operation under optimal condition of temperature and pH. The xylose obtained from the corncob was fermented by Candida tropicalis for 96 h with consumption of 60%. The HPLC analyses indicated a production of 1.02 mg/mL of xylitol with 48 h of fermentation. In conclusion, this is the first report on the immobilization of the A. labrucus xylanase as an alternative for the obtainment of xylose from corncob xylan, and the subsequent production of xylitol.
RESUMEN
Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.
RESUMEN
Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.
Asunto(s)
Enzimas Inmovilizadas , Eurotiales , Lipasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Esterificación , Eurotiales/enzimología , Biocatálisis , Hidrólisis , Sulfonas/química , Sulfonas/farmacología , TemperaturaRESUMEN
Currently, petroleum-derived plastics are widely used despite the disadvantage of their long degradation time. Natural polymers, however, can be used as alternatives to overcome this obstacle, particularly cornstarch. The tensile properties of cornstarch films can be improved by adding plant-derived nanofibers. Sisal (Agave sisalana), a very common low-cost species in Brazil, can be used to obtain plant nanofibers. The goal of this study was to obtain sisal nanofibers using low concentrations of sulfuric acid to produce thermoplastic starch nanocomposite films. The films were produced by a casting technique using commercial corn starch, glycerol, and sisal nanofibers, accomplished by acid hydrolysis. The effects of glycerol and sisal nanofiber content on the tensile mechanical properties of the nanocomposites were investigated. Transmission electron microscopy findings demonstrated that the lowest concentration of sulfuric acid produced fibers with nanometric dimensions related to the concentrations used. X-ray diffraction revealed that the untreated fibers and fibers subjected to acid hydrolysis exhibited a crystallinity index of 61.06 and 84.44%, respectively. When the glycerol and nanofiber contents were 28 and 1%, respectively, the tensile stress and elongation were 8.02 MPa and 3.4%. In general, nanocomposites reinforced with sisal nanofibers showed lower tensile stress and higher elongation than matrices without nanofibers did. These results were attributed to the inefficient dispersion of the nanofibers in the polymer matrix. Our findings demonstrate the potential of corn starch nanocomposite films in the packaging industry.
RESUMEN
The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.
Asunto(s)
Antifúngicos , Botrytis , Brassica , Glucosinolatos , Botrytis/efectos de los fármacos , Glucosinolatos/química , Glucosinolatos/farmacología , Glucosinolatos/metabolismo , Brassica/microbiología , Hidrólisis , Antifúngicos/farmacología , Antifúngicos/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad MicrobianaRESUMEN
The ß-glucosidase gene from Aspergillus nidulans FGSC A4 was cloned and overexpressed in the A. nidulans A773. The resulting purified ß-glucosidase, named AnGH3, is a monomeric enzyme with a molecular weight of approximately 80 kDa, as confirmed by SDS-PAGE. Circular dichroism further validated its unique canonical barrel fold (ß/α), a feature also observed in the 3D homology model of AnGH3. The most striking aspect of this recombinant enzyme is its robustness, as it retained 100% activity after 24 h of incubation at 45 and 50 ºC and pH 6.0. Even at 55 °C, it maintained 72% of its enzymatic activity after 6 h of incubation at the same pH. The kinetic parameters Vmax, KM, and Kcat/KM for ρ-nitrophenyl-ß-D-glucopyranoside (ρNPG) and cellobiose were also determined. Using ρNPG, the enzyme demonstrated a Vmax of 212 U mg - 1, KM of 0.0607 mmol L - 1, and Kcat/KM of 4521 mmol L - 1 s - 1 when incubated at pH 6.0 and 65 °C. The KM, Vmax, and Kcat/KM using cellobiose were 2.7 mmol L - 1, 57 U mg - 1, and 27 mmol -1 s - 1, respectively. AnGH3 activity was significantly enhanced by xylose and ethanol at concentrations up to 1.5 mol L - 1 and 25%, respectively. Even in challenging conditions, at 65 °C and pH 6.0, the enzyme maintained its activity, retaining 100% and 70% of its initial activity in the presence of 200 mmol L - 1 furfural and 5-hydroxymethylfurfural (HMF), respectively. The potential of this enzyme was further demonstrated by its application in the saccharification of the forage grass Panicum maximum, where it led to a 48% increase in glucose release after 24 h. These unique characteristics, including high catalytic performance, good thermal stability in hydrolysis temperature, and tolerance to elevated concentrations of ethanol, D-xylose, furfural, and HMF, position this recombinant enzyme as a promising tool in the hydrolysis of lignocellulosic biomass as part of an efficient multi-enzyme cocktail, thereby opening new avenues in the field of biotechnology and enzymology.
RESUMEN
The study investigated the behavior of seventeen amino acids during spontaneous (SF) and starter culture (SC) fermentation of Criollo cocoa beans from Copallín, Guadalupe and Tolopampa, Amazonas-Peru. For this purpose, liquid chromatography (UHPLC) was used to quantify amino acids. Multivariate analysis was used to differentiate the phases of the fermentation process. The percentage of essential amino acids during SC fermentation (63.4%) was higher than SF (61.8%); it was observed that the starter culture accelerated their presence and increased their concentration during the fermentation process. The multivariate analysis identified a first stage (day 0 to day 2), characterized by a low content of amino acids that increased due to protein hydrolysis. The study showed that adding the starter culture (Saccharomyces cerevisiae) to the fermentation mass increased the concentration of essential amino acids (63.0%) compared to the spontaneous process (61.8%). Moreover, this addition reduced the fermentation time (3-4 days less), demonstrating that the fermentation process with a starter culture allows obtaining a better profile of amino acids precursors of flavor and aroma.
RESUMEN
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.
RESUMEN
The effects of adding vinasse (VIN) as a co-substrate on the stability and production of volatile fatty acids (VFA) and methane (CH4) during the anaerobic digestion (AD) of microalgal biomass (MB) were evaluated. The AD system consisted of an acidogenic reactor (AR) followed by a methanogenic reactor (MR). The experiment was divided into phase I-start-up and AD of VIN; phase II-MB+VIN co-digestion (50:50 based on chemical oxygen demand (COD)); and phase III-co-digestion of pretreated MB and VIN (PTMB+VIN, 50:50). In phase I, the total amount of VFA in the AR increased from 240 to 2126 mg/L. In the MR, the conversion of VFA into CH4 yielded an average of 71 ± 37 NmL CH4/g CODin. In phase II, the initial CH4 production was 246 ± 31 mL CH4/g CODin but it decreased to 63 mL CH4/g CODin due to the accumulation of longer chain acids. More stable conditions were achieved after two hydraulic retention cycles and the average CH4 yield in this phase was 183 mL CH4/g CODin. In phase III, when using PTMB, 197 ± 72 NmL CH4/g CODin were obtained, i.e., a 2.7- and 1.1-fold increases compared to phases I and II, respectively. The predominance of acetate producers and syntrophic organisms suggests acetoclastic methanogenesis, confirmed by the occurrence of Methanosaeta (10.5%).
RESUMEN
The production of silage using fish viscera can be carried out with straightforward methods and permits the exploitation of nutrients that are usually discarded. This process fosters the concept of circular aquaculture. The aim of this study was to evaluate the inclusion of increasing levels of fish viscera silage (VS) on the physical quality of the feed pellets and their effects on their growth performance, health parameters and on economic indices when the experimental extruded feed was offered to tambaqui. A fermented fish VS produced in-house was included in increasing levels on a wet-basis in the formulation of five experimental diets (VS 0%, VS 5%; VS 10%; VS 15% and VS 20%). Juvenile tambaqui (~22.6 g) were stocked in fibreglass tanks of 700 L (n = 4; 21 fish per tank) with a recirculation system and the five experimental diets were attributed in a completely randomized design. The fish were fed with the experimental diets (to apparent satiation) for 13 weeks. At the end of the trial, no significant differences were observed for production performance. Fish fed with the highest inclusion level of VS presented the highest concentration of plasma cholesterol, but this was still within acceptable values for this species. The inclusion of fish VS in diets for juvenile tambaqui reduced the activity of the plasma ALT enzyme, confirming normal liver function. Extruded feed containing fish VS had a production cost of US$ 0.95 per kg, which does not significantly impact the economic indices. Up to 20% of fish VS can be included in the extruded feed formulation for juvenile tambaqui without impairing growth performance or affecting health parameters.
Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Ensilaje , Animales , Ensilaje/análisis , Dieta/veterinaria , Alimentación Animal/análisis , Alimentación Animal/economía , Fermentación , Characiformes/fisiologíaRESUMEN
Essential oils show several biological properties, such as antimicrobial activity, but have limitations regarding their availability and stability. To maximize their antimicrobial effect and protection against environmental conditions, Pickering-type emulsions were used to vehiculate oregano essential oil (OEO) using cellulose nanofibers (CNF) as emulsion stabilizer. Enzymatic hydrolysis was used to produce CNF from a food industry waste (cassava peel), obtaining an environmentally sustainable emulsion stabilizer. It was evaluated how the different properties of the nanofibers affected the stability of the emulsions. Furthermore, the composition of the dispersed phase was varied (different ratios of OEO and sunflower oil-SO) in view of the target application in biodegradable active coatings. Even at very low concentration (0.01 % w/w), CNF was able to form kinetically stable emulsions with small droplet sizes using oil mixtures (OEO + SO). The stabilization mechanism was not purely Pickering, as there was a reduction in interfacial tension. Excellent antimicrobial activity was observed against bacteria and the fungus Alternaria alternata, demonstrating the ability to apply these emulsions in active systems such as coatings and films. An improvement in the stability of emulsions was observed when using a mixture of oils, which is extremely advantageous considering costs and stability to heat treatments, since the desired antimicrobial activity is maintained for the final application.
Asunto(s)
Antiinfecciosos , Celulosa , Emulsiones , Nanofibras , Aceites Volátiles , Origanum , Nanofibras/química , Emulsiones/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Celulosa/química , Celulosa/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Origanum/química , Alternaria/efectos de los fármacosRESUMEN
Alternative milk products such as A2 milk are gaining popular stand within consumer market, for their healthy profile and expected greater digestibility characteristics. However, total mineral content and its bioaccessible profile have lacked in studies through the years, even more because of their relevance in public health. The present study aimed to evaluate the mineral profile of commercial A2 bovine milk (AT) and estimate the bioaccessibility of calcium, phosphorus and magnesium using the INFOGEST protocol. Non-A2 samples (NAT) were evaluated for comparison purpose. The determination of Ca, Mg, Na and K was performed by FAAS and total P was quantified by colorimetric method. Total protein content was determined by Kjeldahl method. Free amino acids were quantified by OPA method along the in vitro digestion stages. Total content of Ca, Na and P exhibited equivalent results between samples, although A2 milk showed elevated levels of total Mg and K in the analyzed batches. AT showed protein content equivalent to NAT. In addition, levels of free NH2 were observed 2 times higher in AT, during the first hour of pancreatic phase in the intestinal digestion. Bioaccessibility of Ca showed equivalent percentages for AT (12-42 %) and NAT (10-39 %). The observed low values were possibly derived from interferences with saturated fatty acids and standardized electrolytes during digestion. Similar amounts of bioaccessible Mg were found for all milk samples (35-97 %), while A2 samples evidenced percentages of bioaccessible P exceeding 60 % across the three batches. Despite the health benefits associated to A2 milk, the study did not evidence clear distinction from non-A2 milk in terms of enhanced essential mineral solubility in digestive tract simulation, considering the association of greater digestibility expected for A2 milk.
Asunto(s)
Aminoácidos , Disponibilidad Biológica , Digestión , Leche , Minerales , Animales , Leche/química , Aminoácidos/análisis , Minerales/análisis , Bovinos , Magnesio/análisisRESUMEN
The meat industry uses phosphates to improve the water-holding capacity (WHC) of meat products, although excess phosphates can be harmful to human health. In this sense, protein hydrolysates offer an alternative with scientific evidence of improved WHCs. Salmon frames, a byproduct rich in protein, must be processed for recovery. Enzymatic technology allows these proteins to be extracted from muscle, and the sequential batch strategy significantly increases protein nitrogen extraction. This study focused on evaluating the WHC of protein hydrolysates from salmon frames obtained through double- and triple-sequential batches compared to conventional hydrolysis. Hydrolysis was carried out for 3 h at 55 °C with 13 mAU of subtilisin per gram of salmon frames. The WHC of each hydrolysate was measured as the cooking loss using concentrations that varied from 0 to 5% (w/w) in the meat matrix. Compared with those obtained through conventional hydrolysis, the hydrolysates obtained through the strategy of double- and triple-sequence batches demonstrated a 55% and 51% reduction in cooking loss, respectively, when they were applied from 1% by weight in the meat matrix. It is essential to highlight that all hydrolysates had a significantly lower cooking loss (p ≤ 0.05) than that of the positive control (sodium tripolyphosphate [STPP]) at its maximum allowable limit when applied at a concentration of 5% in the meat matrix. These results suggest that the sequential batch strategy represents a promising alternative for further improving the WHC of hydrolysates compared to conventional hydrolysis. It may serve as a viable substitute for polyphosphates.
RESUMEN
The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.