RESUMEN
AIMS: Periodontitis is a prevalent inflammatory disorder affecting the oral cavity, driven by dysbiotic oral biofilm and host immune response interactions. While the major clinical focus of periodontitis treatment is currently controlling oral biofilm, understanding the immune response is crucial to prevent disease progression. Soluble epoxide hydrolase (sEH) inhibition has shown promise in preventing alveolar bone resorption. Triggering receptors expressed on myeloid cells (TREMs) play pivotal roles in regulating inflammation and bone homeostasis, and dysregulation of TREM signaling is implicated in periodontitis. Here, we investigated the impact of sEH inhibition on TREM 1 and 2 expression, associated with inflammatory cytokines, and histologically assessed the inflammatory infiltrate in periodontal tissue. METHODS: The experimental periodontitis model was induced by placing a ligature around the upper second molar. For 14 days, animals were treated daily with a sEH inhibitor (TPPU) or vehicle. The alveolar bone loss was examined using a methylene blue stain. Gingival tissues were used to measure the mRNA expression of TREM-1, TREM-2, IKKß, NF-κB, IL-1ß, IL-6, IL-8, and TNF-α by RT-qPCR. Another set of experiments was performed to determine the histological inflammatory scores. RESULTS: In a ligature-induced periodontitis model, sEH inhibition prevented alveolar bone loss and reduced TREM1 expression, albeit with a slight elevation compared to the disease-free group. In contrast, TREM2 expression remained elevated, suggesting sustained immunomodulation favoring resolution. The inhibition of sEH reduced the expression of NF-κB, IL-1ß, and TNF-α, while no differences were found in the expression of IL-6, IL-8, and IKKß. In histological analysis, sEH inhibition reduced the inflammatory leukocyte infiltrate in periodontal tissues close to the ligature. CONCLUSION: These findings underscore the potential of sEH inhibition to modulate periodontal inflammation by regulating TREM-1 alongside decreased IL-1ß and TNF-α expression, highlighting a promising therapeutic approach for periodontitis management.
RESUMEN
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Epóxido Hidrolasas , Humanos , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/genética , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/genética , Persona de Mediana Edad , Pronóstico , Biomarcadores de Tumor/metabolismo , Anciano , Adulto , Núcleo Celular/metabolismo , Regulación hacia Arriba , Regulación Neoplásica de la Expresión Génica , Curva ROC , Anciano de 80 o más Años , Estimación de Kaplan-MeierRESUMEN
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Asunto(s)
Quitinasas , Fusarium , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Zea mays , Fusarium/genética , Fusarium/patogenicidad , Zea mays/microbiología , Zea mays/genética , Quitinasas/genética , Quitinasas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genoma de Planta , FilogeniaRESUMEN
Dienelactone hydrolase (DLH) is one of numerous hydrolytic enzymes with an α/ß-hydrolase fold, which catalyze the hydrolysis of dienelactone to maleylacetate. The DLHs share remarkably similar tertiary structures and a conserved arrangement of catalytic residues. This study presents the crystal structure and comprehensive functional characterization of a novel thermostable DLH from the bacterium Hydrogenobacter thermophilus (HtDLH). The crystal structure of the HtDLH, solved at a resolution of about 1.67â¯Å, exhibits a canonical α/ß-hydrolase fold formed by eight ß-sheet strands in the core, with one buried α-helix and six others exposed to the solvent. The structure also confirmed the conserved catalytic triad of DHLs formed by Cys121, Asp170, and His202 residues. The HtDLH forms stable homodimers in solution. Functional studies showed that HtDLH has the expected esterase activity over esters with short carbon chains, such as p-nitrophenyl acetate, reaching optimal activity at pH 7.5 and 70⯰C. Furthermore, HtDLH maintains more than 50â¯% of its activity even after incubation at 90⯰C for 16â¯h. Interestingly, HtDLH exhibits catalytic activity towards polyethylene terephthalate (PET) monomers, including bis-1,2-hydroxyethyl terephthalate (BHET) and 1-(2-hydroxyethyl) 4-methyl terephthalate, as well as other aliphatic and aromatic esters. These findings associated with the lack of activity on amorphous PET indicate that HtDLH has characteristic of a BHET-degrading enzyme. This work expands our understanding of enzyme families involved in PET degradation, providing novel insights for plastic biorecycling through protein engineering, which could lead to eco-friendly solutions to reduce the accumulation of plastic in landfills and natural environments.
Asunto(s)
Hidrolasas de Éster Carboxílico , Estabilidad de Enzimas , Especificidad por Sustrato , Cristalografía por Rayos X , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Ésteres/metabolismo , Ésteres/química , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica , Concentración de Iones de Hidrógeno , Cinética , Hidrólisis , Dominio Catalítico , TemperaturaRESUMEN
The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.
Asunto(s)
Amidohidrolasas , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Relación Estructura-Actividad , Secuencia Conservada , Bacterias/enzimología , Secuencia de Aminoácidos , Modelos Moleculares , Especificidad por SustratoRESUMEN
Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.
RESUMEN
Recurrent pregnancy loss (RPL) affects around 2% of women of reproductive age. Primary RPL is defined by ≥2 pregnancy losses and no normal birth delivery. In secondary RPL, the losses are after a normal pregnancy and delivery. Most cases have no clear aetiology, although primary cases are the most complex. Several gene single nucleotide polymorphisms (SNPs) have been associated with RPL. The frequency of some SNPs is increased in women suffering from RLP from Asian or Caucasian races; however, in admixed populations, the information on possible genetic links is scarce and contradictory. This study aimed to assess the frequency of two SNPs present in two different enzymes involved in medical conditions observed during pregnancy. It is a case-control study. Microsomal epoxy hydrolase (mEPH) is involved in detoxifying xenobiotics, is present in the ovaries, and is hormonally regulated. The endothelial nitric oxide synthase (NOS3) that forms nitric is involved in vascular tone. Two SNPs, rs1051740 (mEPH) and rs1799983 (NOS3), were assessed. The study included 50 controls and 63 primary RPL patients. The frequency of mutated alleles in both SNPs was significantly higher in patients (p < 0.05). Double-mutated homozygotes were encountered only in RPL patients (p < 0.05). Genetic polymorphisms rs1051740 and rs1799983 may be involved in primary RPL in the Venezuelan admix population. Genetic studies could provide crucial information on the aetiology of primary RPL.
RESUMEN
Resumen Introducción: El síndrome de Leigh (SL) es una enfermedad neurodegenerativa infrecuente que afecta principalmente a lactantes y a escolares, ocasionada por una mutación en genes involucrados en la vía de la fosforilación oxidativa y cuyo déficit produce una disfunción en el metabolismo energético mitocondrial. Clínicamente, se caracteriza por un rápido deterioro neurológico, hallazgos típicos en neuroimagen y marcadores bioquímicos que orientan en su reconocimiento. En la mayoría de los pacientes tiene un curso progresivo y mortalidad temprana. Presentación del caso: Se presenta el caso de una lactante de 5 meses que presenta perdida de los hitos del desarrollo. Los paraclínicos mostraron lactoacidosis, en neuroimagen necrosis nucleobasal, y la secuenciación genómica completa puso en evidencia una mutación homocigota del gen nuclear mitocondrial de la enzima 3-hidroxiisobutiril-CoA hidrolasa HIBCH. La paciente evolucionó con epilepsia refractaria, movimientos anormales, síndrome de West, apneas y falleció a los 10 meses de vida por insuficiencia respiratoria aguda. Discusión: El SL es con frecuencia una enfermedad rápidamente progresiva, que puede ser causada por errores innatos del metabolismo como la mutación del gen de la enzima HIBCH. El diagnóstico confirmatorio se hace con secuenciación exómica o genómica masiva y su manejo consiste en el tratamiento de los síntomas, modificaciones nutricionales, cuidado paliativo y consejería genético-reproductiva. Conclusión: El SL por mutaciones en el gen HIBCH es una enfermedad neurodegenerativa con síntomas variables, que afecta el desarrollo motor e intelectual. El diagnóstico se basa en biología molecular. El tratamiento actual busca aliviar síntomas y ajustar la nutrición, evidenciando desafíos inherentes a errores innatos del metabolismo.
Abstract Introduction: Leigh's syndrome (LS) is a rare neurodegenerative disease affecting mostly infants and scholar age children, caused by mutations in oxidation phosphorylation pathway related genes and leading to a mitochondrial dysfunction. Clinically, it is characterized by rapid neurological deterioration, typical neuroimaging findings and biochemical markers that guide its recognition. In most patients it has a progressive course and early mortality. Case description: Here we show a 5-months-old infant with developmental milestones regression. Lac-toacidosis was evident in labs, neuroimages had nucleobasal necrosis and whole genomic sequencing found a homozygous mutation in 3-hydroxyisobutyryl-CoA hydrolase HIBCH mitochondrial nuclear gene. The patient developed refractory epilepsy, abnormal movements, West'syndrome, apneas and death overcomes at 10-month of life by acute respiratory failure. Discussion: LS is often a rapidly progressive disease, which can be caused by inborn errors of metabolism such as mutation of the HIBCH enzyme gene. Confirmatory diagnosis is made with exome or massive genomic sequencing and its management consists of treatment of symptoms, nutritional modifications, palliative care and genetic-reproductive counseling. Conclusion: LS due to mutations in the HIBCH gene is a neurodegenerative disease with variable symptoms, affecting motor and intellectual development. Diagnosis is based on molecular biology. Current treatment seeks to alleviate symptoms and adjust nutrition, evidencing challenges inherent to inborn errors of metabolism.
RESUMEN
The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.
Asunto(s)
Saccharum , Thermoascus , Poligalacturonasa/metabolismo , Thermoascus/metabolismo , Celulosa , Enzimas Multifuncionales , Saccharum/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , TemperaturaRESUMEN
OBJECTIVES: Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS: The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION: This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.
Asunto(s)
Microbiota , Polisacáridos , Oligosacáridos/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , MonosacáridosRESUMEN
Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.
Asunto(s)
Quitinasas , Humanos , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Proteínas , Quitina/química , Quitina/metabolismo , Biotecnología , HongosRESUMEN
Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.
RESUMEN
Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good ß-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.
RESUMEN
Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially ß-xylosidases. In this study, ß-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of ß-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-ß-d-xylopyranoside. The specific activity on p-nitrophenyl-ß-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other ß-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.
Asunto(s)
Xilosa , Xilosidasas , Xilosa/química , Xilanos/metabolismo , Escherichia coli/metabolismo , Xilosidasas/metabolismo , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Especificidad por SustratoRESUMEN
The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (â¼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.
RESUMEN
Litopenaeus vannamei, the Pacific whiteleg shrimp, is one of the most marketable species in aquaculture worldwide. However, it is susceptible to different infections causing considerable losses in production each year. Consequently, using prebiotics that promotes the proliferation of beneficial bacteria and strengthen the immune system is a current strategy for disease control. In this study, we isolated two strains of E. faecium from the gut of L. vannamei fed with agavin-supplemented diets. These isolates showed antibacterial activity against Vibrio parahaemolyticus, Vibrio harveyi and Vibrio alginolyticus, most likely due to peptidoglycan hydrolase (PGH) activity. Furthermore, we sequenced the genome of one isolate. As a result, we observed three proteins related to the production of bacteriocins, a relevant trait for selecting probiotic strains since they can inhibit the invasion of potential pathogens. Additionally, the genome annotation showed genes related to the production of essential nutrients for the host. It lacked two of the most common factors associated with virulence in Enterococcus pathogenic strains (esp and hyl). Thus, this host-probiotic-derived strain has potential application not only in shrimp health but also in alternative aquatic environments, as it is adapted to coexist within the gut shrimp microbiota, independently of the diet.
Asunto(s)
Enterococcus faecium , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animales , Enterococcus faecium/genética , Probióticos/farmacología , Suplementos Dietéticos , Dieta , Penaeidae/microbiologíaRESUMEN
This work reports the characterization of an amylolytic enzyme from the bacteria Massilia timonae CTI-57. A gene encoding this protein was expressed from the pTrcHis2B plasmid in Escherichia coli BL21 Star™ (DE3). The purified protein had 64 kDa, and its modeled structure showed a monomer with the conserved α-amylases structure composed of the domain A with the characteristic (ß/α)8-barrel, the small domain B, and the domain C with an antiparallel beta-sheet. Phylogenetic analysis demonstrated that the expressed protein belongs to the GH13_19 subfamily of glycoside hydrolases. The ions Ca2+, Mn2+, Na+, Mg2+, Mo6+, and K+ did activate the purified enzyme, while EDTA and the ions Fe2+, Hg2+, Zn2+, and Cu2+ were strong inhibitors. SDS was also a strong inhibitor. The enzyme's optimal pH and temperature were 7.0 and 45 °C, respectively, and its Tm was 62.2 °C. The KM of the purified enzyme for starch was 13 mg/mL, and the Vmax was 0.24 µmol of reducing sugars released per min. The characterized enzyme presented higher specificity for maltodextrin and starch and produced maltose as the main starch hydrolysis product. This is the first characterized maltose-forming amylolytic enzyme from the GH13_19 subfamily. The purified enzyme produced ß-cyclodextrin from starch and maltodextrin and could be considered a cyclodextrin glucanotransferase (CGTase). This is the first report of a GH13_19 subfamily enzyme with CGTase activity.
Asunto(s)
Glicósido Hidrolasas , Maltosa , Filogenia , Glicósido Hidrolasas/química , alfa-Amilasas/química , Almidón/metabolismo , Bacterias/metabolismo , Especificidad por SustratoRESUMEN
Sposisorium reilianum is the causal agent of corn ear smut disease. Eleven genes have been identified in its genome that code for enzymes that could constitute its hemicellulosic system, three of which have been associated with two Endo-ß-1,4-xylanases and one with α-L-arabinofuranosidase activity. In this study, the native protein extracellular with ß-xylosidase activity, called SRBX1, produced by this basidiomycete was analyzed by performing production kinetics and its subsequent purification by gel filtration. The enzyme was characterized biochemically and sequenced. Finally, its synergism with Xylanase SRXL1 was determined. Its activity was higher in a medium with corn hemicellulose and glucose as carbon sources. The purified protein was a monomer associated with the sr16700 gene, with a molecular weight of 117 kDa and optimal activity at 60 °C in a pH range of 4-7, which had the ability to hydrolyze the ρ-nitrophenyl ß-D-xylanopyranoside and ρ-Nitrophenyl α-L-arabinofuranoside substrates. Its activity was strongly inhibited by silver ions and presented Km and Vmax values of 2.5 mM and 0.2 µmol/min/mg, respectively, using ρ-nitrophenyl ß-D-xylanopyranoside as a substrate. The enzyme degrades corn hemicellulose and birch xylan in combination and in sequential synergism with the xylanase SRXL1.
RESUMEN
Glycoside hydrolase family 5 (GH5) harbors diverse substrate specificities and modes of action, exhibiting notable molecular adaptations to cope with the stereochemical complexity imposed by glycosides and carbohydrates such as cellulose, xyloglucan, mixed-linkage ß-glucan, laminarin, (hetero)xylan, (hetero)mannan, galactan, chitosan, N-glycan, rutin and hesperidin. GH5 has been divided into subfamilies, many with higher functional specificity, several of which have not been characterized to date and some that have yet to be discovered with the exploration of sequence/taxonomic diversity. In this work, the current GH5 subfamily inventory is expanded with the discovery of the GH5_57 subfamily by describing an endo-ß-mannanase (CapGH5_57) from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota. Biochemical characterization showed that CapGH5_57 is active on glucomannan, releasing oligosaccharides with a degree of polymerization from 2 to 6, indicating it to be an endo-ß-mannanase. The crystal structure, which was solved using single-wavelength anomalous diffraction, revealed a massively redesigned catalytic interface compared with GH5 mannanases. The typical aromatic platforms and the characteristic α-helix-containing ß6-α6 loop in the positive-subsite region of GH5_7 mannanases are absent in CapGH5_57, generating a large and open catalytic interface that might favor the binding of branched substrates. Supporting this, CapGH5_57 contains a tryptophan residue adjacent and perpendicular to the cleavage site, indicative of an anchoring site for a substrate with a substitution at the -1 glycosyl moiety. Taken together, these results suggest that despite presenting endo activity on glucomannan, CapGH5_57 may have a new type of substituted heteromannan as its natural substrate. This work demonstrates the still great potential for discoveries regarding the mechanistic and functional diversity of this large and polyspecific GH family by unveiling a novel catalytic interface sculpted to recognize complex heteromannans, which led to the establishment of the GH5_57 subfamily.