Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Sci Total Environ ; 953: 176094, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244055

RESUMEN

Elevated ammonium (NH4-N) contents in groundwater are a global concern, yet the mobilization and enrichment mechanisms controlling NH4-N within riverside aquifers (RAS) remain poorly understood. RAS are important zones for nitrogen cycling and play a vital role in regulating groundwater NH4-N contents. This study conducted an integrated assessment of a hydrochemistry dataset using a combination of hydrochemical analyses and multivariate geostatistical methods to identify hydrochemical compositions and NH4-N distribution in the riverside aquifer within Central Yangtze River Basin, ultimately elucidating potential NH4-N sources and factors controlling NH4-N enrichment in groundwater ammonium hotspots. Compared to rivers, these hotspots exhibited extremely high levels of NH4-N (5.26 mg/L on average), which were mainly geogenic in origin. The results indicated that N-containing organic matter (OM) mineralization, strong reducing condition in groundwater and release of exchangeable NH4-N in sediment are main factors controlling these high concentrations of NH4-N. The Eh representing redox state was the dominant variable affecting NH4-N contents (50.17 % feature importance), with Fe2+ and dissolved organic carbon (DOC) representing OM mineralization as secondary but important variables (26 % and 5.11 % feature importance, respectively). This study proposes a possible causative mechanism for the formation of these groundwater ammonium hotspots in RAS. Larger NH4-N sources through OM mineralization and greater NH4-N storage under strong reducing condition collectively drive NH4-N enrichment in the riverside aquifer. The evolution of depositional environment driven by palaeoclimate and the unique local environment within the RAS likely play vital roles in this process.

2.
Sci Rep ; 14(1): 21172, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256388

RESUMEN

A complete understanding of groundwater dynamics and its interaction with surface water under the impact of agricultural activities is vital for local agriculture, ecology, and residents of dry regions, which is not commonly recognized in arid areas. This research outlines the geochemical characteristics, recharge sources, and potential factors impacting groundwater quality in a new land reclamation located in the small basin of Abu Mina, which is part of the Western Nile Delta region.1 Thirty-one groundwater samples and two surface water samples were collected in 2021 to represent the Pleistocene aquifer and were subjected to multivariate statistical, hydrochemical, and stable isotope analyses. Data analysis demonstrates that Na+ > Ca2+ > Mg2+ > K+ and SO42- > Cl- > HCO3- > NO3- are the predominant cations and anions, respectively. Groundwater salinity ranged from 465.60 to 6455.18 mg/l, with slightly alkaline. Most of the water samples fall into one of three types of facies: Ca-Cl, Na-Cl, and Mixed Ca-Mg-Cl, in decreasing order. The meteoric genesis index (r2) indicates that deep meteoric water percolation dominates the Pleistocene aquifer. The aquiline diagrams, correlation matrix, and different ionic ratios indicate that evaporation, reverse ion exchange reactions, and the dissolution of carbonate and silicate minerals are the main processes governing groundwater chemistry. Factor analysis (FA) indicated that three factors explain groundwater hydrochemistry, accounting for 71.98% of the total variance. According to the rotating components matrix (F1-F3), the chemistry of the Quaternary aquifer is principally affected by evaporation, ion exchange reactions, and anthropogenic influences. Additionally, salinity increases due to the return flow of irrigation activities and mixing between old and recent water. The stable isotopes (δ18O and δ2H) indicate that the Quaternary aquifer receives groundwater recharge through the return flow of excess irrigation and canal seepage. Under desert reclamation conditions, groundwater salinization processes should be given special consideration. All groundwater samples are appropriate for agricultural irrigation based on the Sodium Adsorption Ratio (SAR), Permeability Index (PI), Percent Sodium (%Na), and Residual Sodium Carbonate (RSC).

3.
Water Environ Res ; 96(9): e11121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39295203

RESUMEN

This study investigates the chemical characteristics, formation, and sources of inorganic nitrogen (IN) of shallow groundwater across the Sanjiang Plain, aiming to enhance drinking water safety management and pollution control. A total of 167 groundwater and 27 surface water samples were collected for constituents and isotopes (H2 and O18). The hydrogeochemical characteristics showed that the major type is HCO3- Ca·Mg, with low total dissolved solids and a neutral to weak alkaline nature. Rock weathering processes govern the hydrochemical composition of groundwater. Hydrogen and oxygen stable isotopes analyses revealed that precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO3-N concentrations, with sewage, manure, and fertilizers being the primary IN sources. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes, causing the loss of NO3-N and leaving NH4-N as the dominant IN form. Organic matter mineralization is likely a more significant contributor to NH4-N concentrations than ammonium fertilizers. These findings provide valuable information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions. PRACTITIONER POINTS: Rock weathering processes govern the hydrochemical composition of groundwater, and precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO3-N. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes. Organic matter mineralization is likely a more significant contributor to NH4-N concentrations than ammonium fertilizers. These findings provide references for water management and information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions.


Asunto(s)
Agua Subterránea , Nitrógeno , Contaminantes Químicos del Agua , Agua Subterránea/química , China , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente , Fertilizantes/análisis
4.
Water Environ Res ; 96(8): e11088, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091045

RESUMEN

The confined groundwater of arid sedimentary plains has been disturbed by long-term anthropogenic extraction, and its hydrochemical quality is required for sustainable development. The present research investigates the hydrochemical characteristics, formation, potential health threats, and quality suitability of the confined groundwater in the central North China Plain. Results show that the confined groundwater has a slightly alkaline nature in the study area, predominantly dominated by fresh-soft Cl-Na and HCO3-Na types. Water chemistry is governed by water-rock interactions, including dissolution of evaporites and cation exchange. Approximately 97% of the sampled confined groundwaters exceed the prescribed standard for F-. It is mainly due to geological factors such as mineral dissolution, cation exchange, and competitive adsorption of HCO3 - and may also be released from compacted soils because of groundwater extraction. Enriched F- in the confined groundwater can pose an intermediate and higher non-carcinogenic risk to more than 90% of the population. It poses the greatest health threat to the population in the north-eastern part of the study area, especially to infants and children. For sustainable development, the long-term use of confined groundwater for irrigation in the area should be avoided, and attention should also be paid to the potential soil salinization and infiltration risks. In the study area, 97% of the confined groundwaters are found to be excellent or good quality for domestic purposes based on Entropy-weighted Water Quality Index. However, the non-carcinogenic health risk caused by high contents of F- cannot be ignored. Therefore, it is recommended that differential water supplies should be implemented according to the spatial heterogeneity of confined groundwater quality to ensure the scientific and rational use of groundwater resources. PRACTITIONER POINTS: The hydrochemistry quality of confined groundwater in an arid sedimentary plain disturbed by long-term anthropogenic extraction was investigated. The suitability of confined groundwater for multiple purposes such as irrigation and drinking were evaluated. The hydrochemical characteristics and formation mechanism of confined groundwater under the influence of multiple factors were revealed.


Asunto(s)
Agua Subterránea , Agua Subterránea/química , China , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Calidad del Agua , Sedimentos Geológicos/química
5.
Environ Geochem Health ; 46(10): 393, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180598

RESUMEN

The Ngari region has many important rivers and is critical to water resource security and water resource continuity in China and even in adjoining Asian countries. However, the spatial distribution and monthly variation in local water quality have been poorly understood until recently. In this study, the spatial-temporal variations of 12 water quality parameters, including pH, dissolved oxygen (DO), permanganate index (IMn), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NNH3), total nitrogen (Ntotal), total phosphorus (Ptotal), copper (Cu), fluoride (F), arsenic (As) and cadmium (Cd), were determined from samples collected monthly at 22 water cross-sectional sites in the Ngari region in 2020. The surface water pollution in the southern Ngari region was the most serious, and the water pollution level in winter was higher than that in the other seasons. As (0.0781 ~ 0.6154 mg/L) and F (1.05 ~ 4.64 mg/L) were the main exceedance factors derived from the recharge of high arsenic and fluoride geothermal water and weathering of As and F-bearing minerals. The hazard quotient and carcinogenic risk for As and F at the five contaminated sampling sites indicated potential health risks and even carcinogenicity to local populations. The hydrochemistry types of the lakes and rivers in the Ngari region were mainly chloride water and carbonate water. The results from this study can provide a scientific basis for the prevention and control of surface water pollution in the Ngari region and contribute to subsequent research on the ecology of water bodies.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Análisis Espacio-Temporal , Fluoruros/análisis , Arsénico/análisis , Estaciones del Año , Calidad del Agua , Medición de Riesgo , Nitrógeno/análisis , Fósforo/análisis
6.
Sci Rep ; 14(1): 18759, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138260

RESUMEN

Ecological water replenishment is an important measure for conserving water sources and improving the water environment. To explore the evolution and causes of groundwater chemistry after ecological water replenishment in the Jialu River, this study utilized groundwater monitoring data from 2015 to 2019 following ecological water replenishment. Various methods, including Piper's trilinear diagram, Gibbs diagram, principal component analysis, and ion ratio analysis, were employed for research purposes. The results indicate that (1) since the implementation of ecological water replenishment in the Jialu River, there has been a general downwards trend in total dissolved solids (TDS) in groundwater. The dominant cation in groundwater is Ca2+, whereas HCO3- is the dominant anion. The concentration of cations in groundwater has generally decreased, with noticeable reductions in SO42- and Cl- concentrations in the upper reaches of the recharge river contributing to improved groundwater quality. (2) A comparison with 2015 reveals a gradual transition at sampling points from chemical types such as HCO3-Ca·Mg and HCO3·Cl-Ca·Mg to an ecological water replenishment chemical type (HCO3-Ca).

7.
Sci Total Environ ; 953: 175706, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197760

RESUMEN

Rock glaciers (RGs) provide significant water resources in mountain areas under climate change. Recent research has highlighted high concentrations of solutes including trace elements in RG-fed waters, with negative implications on water quality. Yet, sparse studies from a few locations hinder conclusions about the main drivers of solute export from RGs. Here, in an unprecedented effort, we collected published and unpublished data on rock glacier hydrochemistry around the globe. We considered 201 RG springs from mountain ranges across Europe, North and South America, using a combination of machine learning, multivariate and univariate analyses, and geochemical modeling. We found that 35 % of springs issuing from intact RGs (containing internal ice) have water quality below drinking water standards, compared to 5 % of springs connected to relict RGs (without internal ice). The interaction of ice and bedrock lithology is responsible for solute concentrations in RG springs. Indeed, we found higher concentrations of sulfate and trace elements in springs sourcing from intact RGs compared to water originating from relict RGs, mostly in specific lithological settings. Enhanced sulfide oxidation in intact RGs is responsible for the elevated trace element concentrations. Challenges for water management may arise in mountain catchments rich in intact RGs, and where the predisposing geology would make these areas geochemical RG hotspots. Our work represents a first comprehensive attempt to identify the main drivers of solute concentrations in RG waters.

8.
J Water Health ; 22(8): 1444-1471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212281

RESUMEN

The study area covers the Banaz (Usak) basin located in the Aegean Region in the western part of Turkey. Metamorphic, sedimentary, ultramafic, and volcanic rocks are dominant in the basin. The groundwaters in the study area are used for domestic, irrigational, and industrial purposes. Hence, the groundwater chemistry and major geochemical processes in the region were determined. The dominance of major elements was of the order of Ca2+ > Mg2+ > Na+ > K+ and HCO3- > CO3- > Cl- > SO42-. Piper, Durov, Chadha, and Radial plots identified generally Ca2+-Mg2+-HCO3- type waters as the dominant types of water in this area. In terms of physical parameters in the basin, the waters are suitable for drinking. However, arsenic content in Yesilyurt and Corum settlements exceeds the limit values of drinking water standards. In addition, the ammonium value is high in the water sample in the Corum region. Isotope contents in water samples from 2008 to 2023 were evaluated in the study area. The waters in the basin are of meteoric origin according to their stable isotope content. Tritium content in the plain waters indicates recent recharge. Additionally, for children, As and U elements were identified as risky with oral intake and As with dermal contact.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Turquía , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua Potable/química , Agua Potable/análisis , Humanos , Medición de Riesgo , Isótopos/análisis , Arsénico/análisis
9.
Environ Monit Assess ; 196(8): 700, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963476

RESUMEN

This study investigated the mineralogical and chemical characteristics of ochreous precipitates and mine water samples from abandoned Upper Carboniferous hard coal mines in an extensive former mining area in western Germany. Mine water characteristics have been monitored and assessed using a multi-methodological approach. Thirteen mine water discharge locations were sampled for hydrochemical analysis, with a total of 46 water samples seasonally collected in the whole study area for stable isotopic analyses. Mineralogical composition of 13 ochreous precipitates was identified by a combination of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM/EDS). Results showed that abandoned mine drainage was characterized by circumneutral pH, Eh values ranging from 163 to 269 mV, relatively low concentrations of Fe and Mn, and was dominated by HCO3- > SO42- > Cl- > NO3- and Na+ > Ca2+ > Mg2+ > K+. Goethite and ferrihydrite were the dominant precipitated Fe minerals, with traces of quartz, dolomite, and clay minerals. Some metal and metalloid elements (Mn, Al, Si, and Ti) were found in the ochreous sediments. The role of bacteria in the formation of secondary minerals was assessed with the detection of Leptothrix ochracea. The δ18O and δ2H values of mine water plotted on and close to the GMWL and LMWLs indicated local derivation from meteoric water and represented the annual mean precipitation isotopic composition. Results might help to develop strategies for the management of water resources, contaminated mine water, and public health.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Alemania
10.
Water Environ Res ; 96(7): e11062, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982838

RESUMEN

Karst groundwater, which is one of most important drinking water sources, is vulnerable to be polluted as its closed hydraulic relation with surface water. Thus, it is very important to identify the groundwater source to control groundwater pollution. The Pearson correlation coefficient among major ions (Na + K+, Ca2+, Mg2+, HCO3 -, SO4 2-, and Cl-) was employed to deduce the groundwater types in Zhong Liang Mountain, Southwest China. Then, the combined method of principal component analysis and cluster analysis were employed to identify the groundwater sources in a typical karst region of southwest China. The results shown that (1) the high positive correlation between cations and anions indicated the water-rock reaction of Ca-HCO3, Ca-SO4, (Na + K)-Cl, and Mg-SO4. (2) The major two principal components that would represent water-rock reaction of CaSO4 and Ca-HCO3 would, respectively, explain 60.41% and 31.80% of groundwater information. (3) Based on the two principal components, 33 groundwater samples were clustered into eight groups through hierarchical clustering, each group has similar water-rock reaction. The findings would be employed to forecast the surge water, that was an important work for tunnel construction and operation. PRACTITIONER POINTS: The components of groundwater was highly correlated with water-rock reaction. The principal component analysis screens the types of groundwater. The cluster analysis identifies the groundwater sources.


Asunto(s)
Agua Subterránea , China , Agua Subterránea/química , Monitoreo del Ambiente , Análisis por Conglomerados , Contaminantes Químicos del Agua/análisis , Análisis de Componente Principal , Fenómenos Geológicos
11.
Environ Geochem Health ; 46(8): 292, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976118

RESUMEN

Groundwater, as an essential resource, holds significant importance for human production and livelihoods. With the deterioration of the water environment, the issue of groundwater quality has become an urgent international concern. This study focused on the Fenghuang Mountain Area (FMA) and collected a total of 41 sets of samples including pore groundwater (PGW), fissure groundwater (FGW), karst groundwater (KGW), and river water (RW). Hydrochemical analysis methods were employed to identify the hydrochemical characteristics and controlling factors. The entropy-weighted water quality index (EWQI) and health risk assessment model were utilized to assess the groundwater quality and nitrate health risk, respectively. The results indicated that the dominant anion and cation in both groundwater and surface water in the FMA were HCO3- and Ca2+, respectively, with the main hydrochemical type being HCO3-Ca. Groundwater and surface water in the FMA were primarily controlled by rock weathering process, with ion concentrations influenced mainly by the dissolution of halite, sylvite, carbonates (calcite and dolomite), silicates, and gypsum, as well as by reverse anion exchange process. PGW was significantly affected by agricultural activities, with NO3- concentration closely related to human activities. The water quality of FGW was relatively good, with Class I and Class II water accounting for the highest proportion, reaching 84.62%. The high-value area of EWQI in PGW was influenced by human activities. The impact of nitrate health risk on children was significantly greater than on adults, with FGW having the lowest health risk and PGW having the highest health risk. The research results can provide important guarantees for the rational development and utilization of water resources in the FMA and the sustainable development of the economy in Northeast China.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Calidad del Agua , China , Medición de Riesgo , Agua Subterránea/química , Humanos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Niño , Adulto , Ríos/química
12.
Environ Res ; 260: 119622, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019141

RESUMEN

Rapid urbanization worldwide, poses numerous environmental challenges between escalating land use land cover (LULC) changes and groundwater quality dynamics. The main objective of this study was to investigate the dynamics of groundwater quality and LULC changes in Sargodha district, Punjab, Pakistan. Groundwater hydrochemistry reveals acceptable pH levels (<8) but total dissolved solids (TDS), electrical conductivity (EC) and HCO3- showed dynamic fluctuations by exceeding WHO limits. Piper diagrams, indicated dominance by magnesium and bicarbonate types, underscoring the influence of natural processes and anthropogenic activities. Major ion relationships in 2010, 2015, and 2021 showed a high correlation (R2 > 0.85) between Na+ and Cl-, suggesting salinization. whereas, the poor correlation (<0.17) between Ca2+ and HCO3- does not support calcite dissolution as the primary process affecting groundwater composition. The examination of nitrate contamination in groundwater across the years 2010, 2015, and 2021 was found to be high in the municipal sewage zone, suggesting a prevailing issue of nitrate contamination attributed to urban activities. The Nitrate Pollution Index (NPI) reveals a concerning trend, with a higher proportion of samples classified under moderate to high pollution categories in 2015 and 2021 compared to 2010. The qualitative assessment of nitrate concentration on spatiotemporal scale showed lower values in 2010 while a consistent rise from 2015 to 2021 in north-east and western parts of district. Likewise, NPI was high in the north-eastern and south-western regions in 2010, then reduced in subsequent years, which may be attributed to effective waste management practices and alterations in agricultural practices. The health risk assessment of 2010 indicated Total Health Hazard Quotient (THQ) within the standard limit, while in 2015 and 2021, elevated health risk was observed. This study emphasizes the need to use multiple approaches to groundwater management for sustainable land use planning and regulations that prioritize groundwater quality conservation.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Urbanización , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Agua Subterránea/análisis , Pakistán , Contaminantes Químicos del Agua/análisis , Nitratos/análisis
13.
Sci Rep ; 14(1): 16873, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043782

RESUMEN

The traceability of groundwater nitrate pollution is crucial for controlling and managing polluted groundwater. This study integrates hydrochemistry, nitrate isotope (δ15N-NO3- and δ18O-NO3-), and self-organizing map (SOM) and end-member mixing (EMMTE) models to identify the sources and quantify the contributions of nitrate pollution to groundwater in an intensive agricultural region in the Sha River Basin in southwestern Henan Province. The results indicate that the NO3--N concentration in 74% (n = 39) of the groundwater samples exceeded the WHO standard of 10 mg/L. According to the results of EMMTE modeling, soil nitrogen (68.4%) was the main source of nitrate in Cluster-1, followed by manure and sewage (16.5%), chemical fertilizer (11.9%) and atmospheric deposition (3.3%). In Cluster-2, soil nitrogen (60.1%) was the main source of nitrate, with a significant increase in the contribution of manure and sewage (35.5%). The considerable contributions of soil nitrogen may be attributed to the high nitrogen fertilizer usage that accumulated in the soil in this traditional agricultural area. Moreover, it is apparent that most Cluster-2 sampling sites with high contributions of manure and sewage are located around residential land. Therefore, the arbitrary discharge and leaching of domestic sewage may be responsible for these results. Therefore, this study provides useful assistance for the continuous management and pollution control of groundwater in the Sha River Basin.

14.
Heliyon ; 10(12): e32992, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022055

RESUMEN

The current study integrates remote sensing, machine learning, and physicochemical parameters to detect hydrodynamic conditions and groundwater quality deterioration in non-rechargeable aquifer systems. Fifty-two water samples were collected from all water resources in Siwa Oasis and analyzed for physical (pH, T°C, EC, and TDS) chemical (SO4 2-, HCO3 -, NO3 -, Cl-, CO3 2-, SiO2, Mg2+, Na+, Ca2+, and K+), and trace metals (AL, Fe, Sr, Ba, B, and Mn). A digital elevation model supported by machine learning was used to predict the change in the land cover (surface lake area, soil salinity, and water logging) and its effect on water quality deterioration. The groundwater circulation and interaction between the deep aquifer (NSSA) and shallow aquifer (TCA) were detected from the pressure-depth profile of 27 production wells penetrating NSSA. The chemical facies evolution in the aquifer systems were (Ca-Mg-HCO3) in the first stage (freshwater of NSSA) and changed to (Na-Cl) type in the last stage (brackish water of TCA and springs). Support vector machine successfully predicted the rapid increase of the hypersaline lake area from 22.6 km2 to 60.6 km2 within 30 years, which deteriorated a large part of the cultivated land, reflecting the environmental risk of over-extraction of water for irrigation of agricultural land by flooding technique and lack of suitable drainage network. The waterlogging in the study was due to a reduction in the infiltration rate (low permeability) of the soil and quaternary aquifer. The cause of this issue could be a complete saturation of agricultural water with chrysotile, calcite, talc, dolomite, gibbsite, chlorite, Ca-montmorillonite, illite, hematite, kaolinite and K-mica (saturation index >1), giving the chance of these minerals to precipitate in the pore spaces of the soil and decrease the infiltration rate. The NSSA is appropriate for irrigation, whereas TCA is inappropriate due to potential salinity and magnesium risks. The best way to manage water resources in Siwa Oasis could be to use underground drip irrigation and combine water with TCA and NSSA.

15.
Environ Sci Pollut Res Int ; 31(31): 43967-43986, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918296

RESUMEN

Renowned for its agriculture, livestock, and mining, Zhob district, Pakistan, faces the urgent problem of declining groundwater quality due to natural and human-induced factors. This deterioration poses significant challenges for residents who rely on groundwater for drinking, domestic, and irrigation purposes. Therefore, this novel study aimed to carry out a comprehensive assessment of groundwater quality in Zhob district, considering various aspects such as hydrochemical characteristics, human health risks, and suitability for drinking and irrigation purposes. While previous studies may have focused on one or a few of these aspects, this study integrates multiple analyses to provide a holistic understanding of the groundwater quality situation in the region. Additionally, the study applies a range of common hydrochemical analysis methods (acid-base titration, flame atomic absorption spectrometry, and ion chromatography), drinking water quality index (WQI), irrigation indices, and health risk assessment models, using 19 water quality parameters. This multi-method approach enhances the robustness and accuracy of the assessment, providing valuable insights for decision-makers and stakeholders. The results revealed that means of the majority of water quality parameters, such as pH (7.64), electrical conductivity (830.13 µScm-1), total dissolved solids (562.83 mgL-1), as well as various anions, and cations, were in line with drinking water norms. However, the water quality index (WQI) predominantly indicated poor drinking water quality (range = 51-75) at 50% sites, followed by good quality (range = 26-50) at 37% of the sites, with 10% of the sites exhibiting very poor quality (range = 76-100). For irrigation purposes, indices such as sodium percent (mean = 31.37%), sodium adsorption ratio (mean = 0.98 meqL-1), residual sodium carbonate (- 3.15 meqL-1), Kelley's index (mean = 0.49), and permeability (mean = 49.11%) indicated suitability without immediate treatment. However, the magnesium hazard (mean = 46.11%) and potential salinity (mean = 3.93) demonstrated that prolonged application of groundwater for irrigation needs soil management to avoid soil compaction and salinity. Water samples exhibit characteristics of medium salinity and low alkalinity (C2S1) as well as high salinity and low alkalinity (C3S1) categories. The Gibbs diagram results revealed that rock weathering, including silicate weathering and cation exchange, is the primary factor governing the hydrochemistry of groundwater. The hydrochemical composition is dominated by mixed Ca-Mg-Cl, followed by Na-Cl and Mg-Cl types. Furthermore, the human health risk assessment highlighted that fluoride (F-) posed a higher risk compared with nitrate (NO3-). Additionally, ingestion was found to pose a higher risk to health compared to dermal contact, with children being particularly vulnerable. The average hazard index (HI) for children was 1.24, surpassing the allowable limit of 1, indicating detrimental health effects on this subpopulation. Conversely, average HI values for adult females (0.59) and adult males (0.44) were within safe levels, suggesting minimal concerns for these demographic groups. Overall, the study's interdisciplinary approach and depth of analysis make a significant contribution to understanding groundwater quality dynamics and associated risks in Zhob district, potentially informing future management and mitigation strategies.


Asunto(s)
Riego Agrícola , Agua Potable , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Pakistán , Agua Potable/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos , Abastecimiento de Agua
16.
Environ Monit Assess ; 196(7): 624, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884659

RESUMEN

Effectively managing water resources in karst systems requires a thorough understanding of their general conduit network along with their seasonal dynamics. Their investigation has involved well construction or several advanced natural tracer data, most of which are not always available. Hence, this work showcases a pragmatic approach that makes use of basic hydrochemical variables of springs with coarse temporal resolution in characterising a karst system. In this study's example, physicochemical variables like major ion concentrations/ratios, Electrical Conductivity (EC), pH and water temperature (Tw) were measured on 20-day basis for a hydrological year at the Louros Catchment, Greece. We further performed the frequency distribution and variation analysis of EC and Tw, principal component analysis (PCA), scatter plots of carbonate ions vs sulphate and hydrochemographs to determine relevant hydrochemical processes and hydrogeological features. PCA and the scatter plots showed that the simple-type upper karst level is entirely dominated by carbonate dissolution, whereas the complex-type middle and lower levels also involve gypsum and dolomite dissolution. Presence of mixing between karst units was also detected. EC and Tw analyses revealed the degree of karstification of different units and relative depths of flow systems. Hydrochemographs reflected the seasonality of limestone and gypsum dissolution's contributions linked to the dominant flow type (conduit vs diffuse). This study thus was able to demonstrate the usefulness of such holistic hydrochemical analyses to better understand karst systems. Given their cost-effectiveness, they can be easily applied to any understudied karst system worldwide.


Asunto(s)
Monitoreo del Ambiente , Grecia , Manantiales Naturales/química , Estaciones del Año , Hidrología , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
17.
Environ Res ; 257: 119272, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823613

RESUMEN

Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.


Asunto(s)
Bacterias , Bahías , Bahías/microbiología , Bacterias/genética , Microbiota/efectos de los fármacos , Biodiversidad , Calidad del Agua , Estuarios
18.
J Environ Manage ; 362: 121269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823303

RESUMEN

Monitoring and assessing groundwater quality and quantity lays the basis for sustainable management. Therefore, this research aims to investigate various factors that affect groundwater quality, emphasizing its distance to the primary source of recharge, the Nile River. To this end, two separate study areas have been considered, including the West and West-West of Minia, Egypt, located around 30 and 80 km from the Nile River. The chosen areas rely on the same aquifer as groundwater source (Eocene aquifer). Groundwater quality has been assessed in the two studied regions to investigate the difference in quality parameters due to the river's distance. The power of machine learning to associate different variables and generate beneficial relationships has been utilized to mitigate the cost consumed in chemical analysis and alleviate the calculation complexity. Two adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the water quality index (WQI) and the irrigation water quality index (IWQI) using EC and the distance to the river. The findings of the assessment of groundwater quality revealed that the groundwater in the west of Minia exhibits suitability for agricultural utilization and partially meets the criteria for potable drinking water. Conversely, the findings strongly recommend the implementation of treatment processes for groundwater sourced from the West-West of Minia before its usage for various purposes. These outcomes underscore the significant influence of surface water recharge on the overall quality of groundwater. Also, the results revealed the uncertainty of using sodium adsorption ratio (SAR), Sodium Percentage (Na%), and Permeability Index (PI) techniques in assessing groundwater for irrigation and recommended using IWQI. The developed ANFIS models depicted perfect accuracy during the training and validation stages, reporting a coefficient of correlation (R) equal to 0.97 and 0.99 in the case of WQI and 0.96 and 0.98 in the case of IWQI. The research findings could incentivize decision-makers to monitor, manage, and sustain groundwater.


Asunto(s)
Agua Subterránea , Calidad del Agua , Agua Subterránea/química , Egipto , Ríos/química , Monitoreo del Ambiente , Lógica Difusa , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 31(30): 43117-43137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38886272

RESUMEN

Owing to increasing anthropogenic impacts, wetlands have suffered a serious environmental decline in recent decades. The sustainable management of these natural resources is fundamental to maintain both the ecosystems and the economic activities. The Lake Massaciuccoli and nearby areas represent one of the largest residual coastal marshy areas in Tuscany (Italy). This wetland is characterized by large-scale and intensive agricultural use and affected by reclamation activities, with consequent problems of erosion, subsidence and lake eutrophication and siltation. In this context, an integrated study combining hydrochemical data (water levels, electrical conductivity, pH, turbidity, major ions, trace metals) and stable isotopes (H, O, S) has been performed in the southernmost part of the basin, to better disentangle processes and interactions between groundwater and surface water and to understand the origin of solutes and their evolution. Our results indicated that both groundwater and surface water have a meteoric origin and that geochemical composition of groundwater is mainly affected by local geological and biological processes. Moreover, surface water is affected by sea water mixing and evapotranspiration/precipitation processes. The impact of agricultural activity and the use of fertilizers on the water quality appears to be limited as regards nitrates, indicating that less intense agricultural practices implemented in recent years have been successful. As regards sulfates, Fe, and Mn, we cannot fully elucidate the mechanisms underlying human influence, but the oscillation of water level and degradation of peat enhanced by reclamation and agriculture activities likely played an important role in controlling the fate of these elements. Overall, these results underline the importance of integrated approaches to disentangle geochemical processes and will be useful in supporting policy implementation and environmental protection in this valuable area of Tuscany. Findings from this work suggest the need for policy-making authorities to take actions as soon as possible to mitigate risks. Closer co-operation is essential between authorities and farmers to reduce inputs of fertilizers and chemicals into the lake and the surrounding area. Also, additional policy measures should be enforced to reduce the mechanical soil tillage and limit erosion and runoff, such as the NBSs implemented within the Phusicos Project.


Asunto(s)
Monitoreo del Ambiente , Hidrodinámica , Calidad del Agua , Humedales , Italia , Agua Subterránea/química , Lagos/química , Agricultura , Contaminantes Químicos del Agua/análisis
20.
Environ Geochem Health ; 46(7): 239, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849593

RESUMEN

The Ras Elma region, situated to the south of the city of Taza in northern Morocco, boasts abundant travertine formations that continue to develop, albeit selectively in specific sheltered sites. This development is influenced by various parameters, including the role of water chemistry. This article presents a spatio-temporal analysis of various hydrochemical parameters, including conductivity, pH, temperature, magnesium, calcium, and others. It's worth noting that the water from the Ras Elma Vauclusian spring, a key driver of travertinization in the region, is sourced from water infiltrating through faults and flowing into Lake Tompraire, known as Dayat Chikker near the Bab Boudir area. The findings suggest that the water in Ras Elma has turned aggressive, as revealed by the examination of the calcaro-carbonic equilibrium. CaCO3 precipitation occurs predominantly in the summer, significantly impacting the formation of travertines, particularly those of the spring and dam types. However, valley-type travertines exhibit more extensive development compared to the other two types.


Asunto(s)
Temperatura , Marruecos , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Calcio/análisis , Manantiales Naturales/química , Magnesio/análisis , Magnesio/química , Estaciones del Año , Carbonato de Calcio/química , Lagos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA