Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
New Phytol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238117

RESUMEN

It is well-known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized. We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors. Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought-tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought-tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species. Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.

2.
Tree Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190893

RESUMEN

Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales, and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are: (1) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (2) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (3) Standardizing methodologies, processing, and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices, and early career training opportunities. (4) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.

3.
New Phytol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160672

RESUMEN

Plant response to water stress involves multiple timescales. In the short term, stomatal adjustments optimize some fitness function commonly related to carbon uptake, while in the long term, traits including xylem resilience are adjusted. These optimizations are usually considered independently, the former involving stomatal aperture and the latter carbon allocation. However, short- and long-term adjustments are interdependent, as 'optimal' in the short term depends on traits set in the longer term. An economics framework is used to optimize long-term traits that impact short-term stomatal behavior. Two traits analyzed here are the resilience of xylem and the resilience of nonstomatal limitations (NSLs) to photosynthesis at low-water potentials. Results show that optimality requires xylem resilience to increase with climatic aridity. Results also suggest that the point at which xylem reach 50% conductance and the point at which NSLs reach 50% capacity are constrained to approximately a 2 : 1 linear ratio; however, this awaits further experimental verification. The model demonstrates how trait coordination arises mathematically, and it can be extended to many other traits that cross timescales. With further verification, these results could be used in plant modelling when information on plant traits is limited.

4.
New Phytol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180209

RESUMEN

Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function. We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale. This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.

5.
Dev Cell ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39137775

RESUMEN

Formation of fluid-filled lumina by epithelial tissues is essential for organ development. How cells control the hydraulic and cortical forces to control lumen morphology is not well understood. Here, we quantified the mechanical role of tight junctions in lumen formation using MDCK-II cysts. We found that the paracellular ion barrier formed by claudin receptors is not required for the hydraulic inflation of a lumen. However, the depletion of the zonula occludens scaffold resulted in lumen collapse and folding of apical membranes. Combining quantitative measurements of hydrostatic lumen pressure and junctional tension with modeling enabled us to explain lumen morphologies from the pressure-tension force balance. Tight junctions promote lumen inflation by decreasing cortical tension via the inhibition of myosin. In addition, our results suggest that excess apical area contributes to lumen opening. Overall, we provide a mechanical understanding of how epithelial cells use tight junctions to modulate tissue and lumen shape.

6.
AoB Plants ; 16(4): plae040, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39119045

RESUMEN

Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal 'bamboo rain'. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the build-up of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. The pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not 'root pressure' but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibres. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.

7.
New Phytol ; 244(1): 147-158, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096020

RESUMEN

The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil-plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration. We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil-plant conductance in the highly embolism-resistant species Callitris tuberculata using continuous dendrometer measurements of leaf water potential during drought. We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil-plant hydraulic pathway and xylem embolism spread. We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.


Asunto(s)
Ácido Abscísico , Sequías , Estomas de Plantas , Transpiración de Plantas , Suelo , Agua , Estomas de Plantas/fisiología , Ácido Abscísico/metabolismo , Agua/fisiología , Agua/metabolismo , Transpiración de Plantas/fisiología , Xilema/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología
8.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101679

RESUMEN

Future changes in climate, together with rising atmospheric CO 2 ${\text{CO}}_{2}$ , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity, CO 2 ${\text{CO}}_{2}$ and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.

9.
J R Soc Interface ; 21(217): 20240103, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140327

RESUMEN

Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in Adiantum (maidenhair fern) leaves, presented in Brodribb et al. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA 113, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in Adiantum leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.


Asunto(s)
Modelos Biológicos , Hojas de la Planta , Biomimética , Materiales Biomiméticos/química
10.
New Phytol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205436

RESUMEN

Studies have explored how traits separate plants ecologically and the trade-offs that underpin this separation. However, uncertainty remains as to the taxonomic scale at which traits can predictably separate species. We studied how physiological traits separated three Pinus (Pinus banksiana, Pinus resinosa, and Pinus strobus) species across three sites. We collected traits from four common leaf and branch measurements (light-response curves, CO2-response curves, pressure-volume curves, and hydraulic vulnerability curves) across each species and site. While common, these measurements are not typically measured together due to logistical constraints. Few traits varied across species and sites as expected given the ecological preferences of the species and environmental site characteristics. Some trait trade-offs present at broad taxonomic scales were observed across the three species, but most were absent within species. Certain trade-offs contrasted expectations observed at broader scales but followed expectations given the species' ecological preferences. We emphasize the need to both clarify why certain traits are being studied, as variation in unexpected but ecologically meaningful ways often occurs and certain traits might not vary substantially within a given lineage (e.g. hydraulic vulnerability in Pinus), highlighting the role a trait selection in trait ecology.

11.
J Exp Bot ; 75(13): 3758-3761, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982745

RESUMEN

This insight article comments on: Ziegler C, Cochard, H, Stahl C, Bastien Gérard LF, Goret J, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. 2024. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany 75, 4128-4147.


Asunto(s)
Sequías , Árboles , Árboles/fisiología , Árboles/crecimiento & desarrollo , Bosque Lluvioso , Agua/metabolismo , Agua/fisiología , Estrés Fisiológico
12.
New Phytol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044658

RESUMEN

Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended 'least-cost' optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ΨPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆Ψ) had an interactive effect on ci : ca. CS, WD and ΨPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon-water balance.

13.
Ecol Evol ; 14(7): e11552, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952657

RESUMEN

Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and  resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.

14.
Plant Cell Environ ; 47(9): 3375-3392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38826042

RESUMEN

Sap is transported through numerous conduits in the xylem of woody plants along the path from the soil to the leaves. When all conduits are functional, vessel lumen diameter is a strong predictor of hydraulic conductivity. As vessels become embolized, sap movement becomes increasingly affected by factors operating at scales beyond individual conduits, creating resistances that result in hydraulic conductivity diverging from diameter-based estimates. These effects include pit resistances, connectivity, path length, network topology, and vessel or sector isolation. The impact of these factors varies with the level and distribution of emboli within the network, and manifest as alterations in the relationship between the number and diameter of embolized vessels with measured declines in hydraulic conductivity across vulnerability to embolism curves. Divergences between measured conductivity and diameter-based estimates reveal functional differences that arise because of species- and tissue-specific vessel network structures. Such divergences are not uniform, and xylem tissues may diverge in different ways and to differing degrees. Plants regularly operate under nonoptimal conditions and contain numerous embolized conduits. Understanding the hydraulic implications of emboli within a network and the function of partially embolized networks are critical gaps in our understanding of plants occurring within natural environments.


Asunto(s)
Xilema , Xilema/fisiología , Agua/fisiología , Transporte Biológico
15.
New Phytol ; 243(4): 1329-1346, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898642

RESUMEN

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.


Asunto(s)
Cycadopsida , Sequías , Hojas de la Planta , Agua , Xilema , Xilema/fisiología , Xilema/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Cycadopsida/fisiología , Cycadopsida/anatomía & histología , Especificidad de la Especie
16.
Plant Physiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865443

RESUMEN

Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.

17.
Front Plant Sci ; 15: 1351438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903426

RESUMEN

Drought and salinity are two abiotic stresses that affect plant productivity. We exposed 2-year-old Platycladus orientalis saplings to single and combined stress of drought and salinity. Subsequently, the responses of physiological traits and soil properties were investigated. Biochemical traits such as leaf and root phytohormone content significantly increased under most stress conditions. Single drought stress resulted in significantly decreased nonstructural carbohydrate (NSC) content in stems and roots, while single salt stress and combined stress resulted in diverse response of NSC content. Xylem water potential of P. orientalis decreased significantly under both single drought and single salt stress, as well as the combined stress. Under the combined stress of drought and severe salt, xylem hydraulic conductivity significantly decreased while NSC content was unaffected, demonstrating that the risk of xylem hydraulic failure may be greater than carbon starvation. The tracheid lumen diameter and the tracheid double wall thickness of root and stem xylem was hardly affected by any stress, except for the stem tracheid lumen diameter, which was significantly increased under the combined stress. Soil ammonium nitrogen, nitrate nitrogen and available potassium content was only significantly affected by single salt stress, while soil available phosphorus content was not affected by any stress. Single drought stress had a stronger effect on the alpha diversity of rhizobacteria communities, and single salt stress had a stronger effect on soil nutrient availability, while combined stress showed relatively limited effect on these soil properties. Regarding physiological traits, responses of P. orientalis saplings under single and combined stress of drought and salt were diverse, and effects of combined stress could not be directly extrapolated from any single stress. Compared to single stress, the effect of combined stress on phytohormone content and hydraulic traits was negative to P. orientalis saplings, while the combined stress offset the negative effects of single drought stress on NSC content. Our study provided more comprehensive information on the response of the physiological traits and soil properties of P. orientalis saplings under single and combined stress of drought and salt, which would be helpful to understand the adapting mechanism of woody plants to abiotic stress.

18.
Plant Cell Environ ; 47(8): 2999-3014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644635

RESUMEN

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.


Asunto(s)
Carbono , Agua , Xilema , Carbono/metabolismo , Agua/metabolismo , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología , Caragana/fisiología , Caragana/crecimiento & desarrollo , Caragana/metabolismo , Fotosíntesis/fisiología , Arena , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Suelo/química , China
19.
Oecologia ; 204(4): 931-941, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607552

RESUMEN

Whole-plant hydraulics provide important information about responses to water limitation and can be used to understand how plant communities may change in a drier climate when measured on multiple species. Here, we measured above- and belowground hydraulic traits in Cornus drummondii, an encroaching shrub within North American tallgrass prairies, and Andropogon gerardii, a dominant C4 grass, to assess the potential hydraulic responses to future drought as this region undergoes woody expansion. Shelters that reduced precipitation by 50% and 0% were built over shrubs and grasses growing in sites that are burned at 1-year and 4-year frequencies. We then measured aboveground (Kshoot), belowground (Kroot), and whole-plant maximum hydraulic conductance (Kplant) in C. drummondii and Kroot in A. gerardii. We also measured vulnerability to embolism (P50) in C. drummondii stems. Overall, we show that: (1) A. gerardii had substantially greater Kroot than C. drummondii; (2) belowground hydraulic functioning was linked with aboveground processes; (3) above- and belowground C. drummondii hydraulics were not negatively impacted by the rainfall reductions imposed here. These results suggest that a multi-year drought will not ameliorate rates of woody expansion and highlight key differences in aboveground and belowground hydraulics for dominant species within the same ecosystem.


Asunto(s)
Sequías , Poaceae , Agua
20.
New Phytol ; 242(6): 2464-2478, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641796

RESUMEN

Xylem conduits have lignified walls to resist crushing pressures. The thicker the double-wall (T) relative to its diameter (D), the greater the implosion safety. Having safer conduits may incur higher costs and reduced flow, while having less resistant xylem may lead to catastrophic collapse under drought. Although recent studies have shown that conduit implosion commonly occurs in leaves, little is known about how leaf xylem scales T vs D to trade off safety, flow efficiency, mechanical support, and cost. We measured T and D in > 7000 conduits of 122 species to investigate how T vs D scaling varies across clades, habitats, growth forms, leaf, and vein sizes. As conduits become wider, their double-cell walls become proportionally thinner, resulting in a negative allometry between T and D. That is, narrower conduits, which are usually subjected to more negative pressures, are proportionally safer than wider ones. Higher implosion safety (i.e. higher T/D ratios) was found in asterids, arid habitats, shrubs, small leaves, and minor veins. Despite the strong allometry, implosion safety does not clearly trade off with other measured leaf functions, suggesting that implosion safety at whole-leaf level cannot be easily predicted solely by individual conduits' anatomy.


Asunto(s)
Hojas de la Planta , Xilema , Xilema/fisiología , Xilema/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Pared Celular , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA