Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.168
Filtrar
1.
Methods Mol Biol ; 2852: 181-196, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235745

RESUMEN

This chapter introduces protocols for culturing and maintaining Dictyostelium discoideum and methods for conducting virulence assays in this organism to study bacterial pathogenicity. It outlines advanced techniques, such as automated microscopy and flow cytometry, for detailed cellular analysis and traditional microbiological approaches. These comprehensive protocols will enable researchers to probe the virulence factors of pathogens like Klebsiella pneumoniae and to elucidate the details of host-pathogen interactions within a cost-effective and adaptable laboratory framework.


Asunto(s)
Dictyostelium , Citometría de Flujo , Klebsiella pneumoniae , Dictyostelium/microbiología , Citometría de Flujo/métodos , Klebsiella pneumoniae/patogenicidad , Fagocitosis , Virulencia , Interacciones Huésped-Patógeno , Microscopía/métodos
2.
Planta ; 260(4): 92, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261328

RESUMEN

MAIN CONCLUSION: The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.


Asunto(s)
Interacciones Huésped-Patógeno , Hypocreales , Oryza , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/fisiología , Virulencia/genética , Sitios de Carácter Cuantitativo/genética , Resistencia a la Enfermedad/genética , Genoma Fúngico
3.
J Infect Dis ; 230(Supplement_2): S150-S164, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255393

RESUMEN

Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/microbiología , Encéfalo/patología , Encéfalo/fisiopatología , Trastornos de la Sensación/fisiopatología , Trastornos de la Sensación/microbiología , Envejecimiento/fisiología
4.
Proc Natl Acad Sci U S A ; 121(38): e2410679121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39264739

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Enterotoxinas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Interacciones Huésped-Patógeno , Escherichia coli Enterotoxigénica/metabolismo , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Enterotoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Antígeno Carcinoembrionario/metabolismo , Antígeno Carcinoembrionario/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Diarrea/microbiología , Diarrea/metabolismo
5.
Enzymes ; 55: 313-342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39222996

RESUMEN

Carbonic anhydrases (CAs) catalyze the reversable hydration of carbon dioxide to bicarbonate placing them into the core of the biochemical carbon cycle. Due to the fundamental importance of their function, they evolved independently into eight classes, three of which have been recently discovered. Most research on CAs has focused on their representatives in eukaryotic organisms, while prokaryotic CAs received significantly less attention. Nevertheless, prokaryotic CAs play a key role in the fundamental ability of the biosphere to acquire CO2 for photosynthesis and to decompose the organic matter back to CO2. They also contribute to a broad spectrum of processes in pathogenic bacteria, enhancing their ability to survive in a host and, therefore, present a promising target for developing antimicrobials. This review focuses on the distribution of CAs among bacterial pathogens and their importance in bacterial virulence and host-pathogen interactions.


Asunto(s)
Bacterias , Anhidrasas Carbónicas , Anhidrasas Carbónicas/metabolismo , Bacterias/enzimología , Bacterias/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Dióxido de Carbono/metabolismo , Virulencia
6.
Infect Immun ; : e0018324, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235225

RESUMEN

Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.

7.
Crit Rev Microbiol ; : 1-20, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225080

RESUMEN

Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.

8.
Front Immunol ; 15: 1419782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39295861

RESUMEN

Bacterial infections remain a significant global health concern, necessitating a comprehensive understanding of the intricate host-pathogen interactions that play a critical role in the outcome of infectious diseases. Recent investigations have revealed that noncoding RNAs (ncRNAs) are key regulators of these complex interactions. Among them, long noncoding RNAs (lncRNAs) have gained significant attention because of their diverse regulatory roles in gene expression, cellular processes and the production of cytokines and chemokines in response to bacterial infections. The host utilizes lncRNAs as a defense mechanism to limit microbial pathogen invasion and replication. On the other hand, some host lncRNAs contribute to the establishment and maintenance of bacterial pathogen reservoirs within the host by promoting bacterial pathogen survival, replication, and dissemination. However, our understanding of host lncRNAs in the context of bacterial infections remains limited. This review focuses on the impact of host lncRNAs in shaping host-pathogen interactions, shedding light on their multifaceted functions in both host defense and bacterial survival, and paving the way for future research aimed at harnessing their regulatory potential for clinical applications.


Asunto(s)
Infecciones Bacterianas , Interacciones Huésped-Patógeno , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Animales , Bacterias/genética , Bacterias/inmunología , Regulación de la Expresión Génica
9.
Heliyon ; 10(17): e37203, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296181

RESUMEN

Alternaria solani (Ellis & Martin) Jones & Grout, causing early blight infection in solanaceous crops, is a growing threat influencing sustainable crop production. Understanding the variation in the foliar microbiome, particularly the bacterial community during pathogenesis, can provide critical information on host-pathogen interactions, highlighting the host immune response during pathogen invasion. In the present study, early blight (EB) infection was artificially induced in tomato leaves, and the transition in the foliar bacterial community from healthy leaf tissue to infected leaves was analyzed. The 16s sequencing data revealed a significant shift in alpha and beta diversity, with infected leaf tissue exhibiting considerably lower bacterial abundance and diversity. Further interpretation at the genus level highlighted the possible role of the host immune system in recruiting higher nitrogen-fixing bacteria to resist the pathogen. The study, in addition to analyzing the foliar bacterial community transition during pathogenesis, has also shed light on the possible strategy employed by the host in recruiting selective nutrient-enriching microbes. Further application of this research in developing biocontrol agents with higher microbial host colonizing ability will be of tremendous benefit in achieving sustainable EB control measures.

10.
Immune Netw ; 24(4): e31, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39246616

RESUMEN

Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.

11.
Plants (Basel) ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273916

RESUMEN

Soil seedbanks are particularly important for the resiliency of species living in habitats threatened by climate change, such as alpine meadows. We investigated the germination rate and seedbank potential for the endemic species Dianthus pavonius, a carnation native to the Maritime Alps that is used as model system for disease in natural populations due to its frequent infections by a sterilizing anther-smut pathogen. We aimed to ascertain whether this species can create a persistent reserve of viable seeds in the soil which could impact coevolutionary dynamics. Over three years, we collected data from seeds sown in natural soil and analyzed their germination and viability. We found that D. pavonius seeds are not physiologically dormant and they are able to create a persistent soil seed bank that can store seeds in the soil for up to three years, but lower than the estimated plant lifespan. We conclude that while the seedbank may provide some demographic stability to the host population, its short duration is unlikely to strongly affect the host's ability to respond to selection from disease. Our findings have implications for the conservation of this alpine species and for understanding the evolutionary dynamics between the host and its pathogen.

12.
mBio ; : e0212424, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292011

RESUMEN

In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.

13.
Int J Med Microbiol ; 316: 151633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232290

RESUMEN

Pathogenic spirochetes of the genus Leptospira are the causative agent of leptospirosis, a widely disseminated zoonosis that affects humans and animals. The ability of leptospires to quickly cross host barriers causing infection is not yet fully understood. Thus, understanding the mechanisms of pathogenicity is important to combat leptospiral infection. Outer membrane proteins are interesting targets to study as they are able to interact with host molecules. Proteins containing leucine-rich repeat (LRR) domains are characterized by the presence of multiple regions containing leucine residues and they have putative functions related to host-pathogen interactions. Hence, the present study aimed to clone and express the recombinant protein encoded by the LIC11098 gene, an LRR protein of L. interrogans serovar Copenhageni. In silico analyses predicted that the target protein is conserved among pathogenic strains of Leptospira, having a signal peptide and multiple LRR domains. The DNA sequence encoding the LRR protein was cloned in frame into the pAE vector, expressed without mutations in Escherichia coli and purified by His-tag chromatography. Circular dichroism (CD) spectrum showed that the recombinant protein was predominantly composed of ß-sheets. A dose-dependent interaction was observed with cellular and plasma fibronectins, laminin and the complement system component C9, suggesting a possible role of the protein encoded by LIC11098 gene at the initial stages of infection.


Asunto(s)
Leptospira interrogans , Proteínas Repetidas Ricas en Leucina , Proteínas Recombinantes , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Simulación por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Clonación Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Leptospirosis/microbiología , Animales , Interacciones Huésped-Patógeno , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Dicroismo Circular , Secuencia de Aminoácidos
14.
Results Probl Cell Differ ; 73: 521-535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242391

RESUMEN

Intracellular protozoan pathogens have to negotiate the internal environment of the host cell they find themselves in, as well as manipulate the host cell to ensure their own survival, replication, and dissemination. The transfer of key effector molecules from the pathogen to the host cell is crucial to this interaction and is technically more demanding to study as compared to an extracellular pathogen. While several effector molecules have been identified, the mechanisms and conditions underlying their transfer to the host cell remain partly or entirely unknown. Improvements in experimental systems have revealed tantalizing details of such intercellular transfer, which form the subject of this chapter.


Asunto(s)
Apicomplexa , Interacciones Huésped-Parásitos , Humanos , Interacciones Huésped-Parásitos/fisiología , Apicomplexa/fisiología , Apicomplexa/metabolismo , Animales
15.
Ecol Evol ; 14(9): e11143, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234161

RESUMEN

Intracellular plant defense against pathogens is mediated by a class of disease resistance genes known as NB-LRRs or NLRs (R genes). Many of the diseases these genes protect against are more prevalent in regions of higher rainfall, which provide better growth conditions for the pathogens. As such, we expect a higher selective pressure for the maintenance and proliferation of R genes in plants adapted to wetter conditions. In this study, we enriched libraries for R genes using RenSeq from baits primarily developed from the common sunflower (Helianthus annuus) reference genome. We sequenced the R gene libraries of Silphium integrifolium Michx, a perennial relative of sunflower, from 12 prairie remnants across a rainfall gradient in the Central Plains of the United States, with both Illumina short-read (n = 99) and PacBio long-read (n = 10) approaches. We found a positive relationship between the mean effective annual precipitation of a plant's source prairie remnant and the number of R genes in its genome, consistent with intensity of plant pathogen coevolution increasing with precipitation. We show that RenSeq can be applied to the study of ecological hypotheses in non-model relatives of model organisms.

16.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091797

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.

17.
J Eukaryot Microbiol ; : e13045, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095558

RESUMEN

Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.

18.
Front Cell Infect Microbiol ; 14: 1425624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145307

RESUMEN

Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.


Asunto(s)
Aeromonas hydrophila , Biopelículas , Fimbrias Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Operón , Aeromonas hydrophila/genética , Aeromonas hydrophila/patogenicidad , Aeromonas hydrophila/fisiología , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Virulencia/genética , Animales , Infecciones por Bacterias Gramnegativas/microbiología , Enfermedades de los Peces/microbiología , Adhesión Bacteriana/genética , Bagres/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Inactivación de Genes
19.
J Med Microbiol ; 73(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39158416

RESUMEN

Introduction. Mycobacterium abscessus (MABS) is a pathogenic bacterium that can cause severe lung infections, particularly in individuals with cystic fibrosis. MABS colonies can exhibit either a smooth (S) or rough (R) morphotype, influenced by the presence or absence of glycopeptidolipids (GPLs) on their surface, respectively. Despite the clinical significance of these morphotypes, the relationship between GPL levels, morphotype and the pathogenesis of MABS infections remains poorly understood.Gap statement. The mechanisms and implications of GPL production and morphotypes in clinical MABS infections are unclear. There is a gap in understanding their correlation with infectivity and pathogenicity, particularly in patients with underlying lung disease.Aim. This study aimed to investigate the correlation between MABS morphology, GPL and infectivity by analysing strains from cystic fibrosis patients' sputum samples.Methodology. MABS was isolated from patient sputum samples and categorized by morphotype, GPL profile and replication rate in macrophages. A high-content ex vivo infection model using THP-1 cells assessed the infectivity of both clinical and laboratory strains.Results. Our findings revealed that around 50 % of isolates displayed mixed morphologies. GPL analysis confirmed a consistent relationship between GPL content and morphotype that was only found in smooth isolates. Across morphotype groups, no differences were observed in vitro, yet clinical R strains were observed to replicate at higher levels in the THP-1 infection model. Moreover, the proportion of infected macrophages was notably higher among clinical R strains compared to their S counterparts at 72 h post-infection. Clinical variants also infected THP-1 cells at significantly higher rates compared to laboratory strains, highlighting the limited translatability of lab strain infection data to clinical contexts.Conclusion. Our study confirmed the general correlation between morphotype and GPL levels in smooth strains yet unveiled more variability within morphotype groups than previously recognized, particularly during intracellular infection. As the R morphotype is the highest clinical concern, these findings contribute to the expanding knowledge base surrounding MABS infections, offering insights that can steer diagnostic methodologies and treatment approaches.


Asunto(s)
Glucolípidos , Macrófagos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium abscessus/aislamiento & purificación , Mycobacterium abscessus/clasificación , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Glucolípidos/análisis , Células THP-1 , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Esputo/microbiología , Glicopéptidos
20.
Clin Exp Immunol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129562

RESUMEN

B-cells play a critical role in the formation of immune responses against pathogens by acting as antigen-presenting cells, by modulating immune responses and by generating immune memory and antibody responses. Here, we studied B-cell subset distributions between regions with higher and lower microbial exposure, i.e. by comparing peripheral blood B-cells from people living in Indonesia or Ghana to those from healthy Dutch residents using a 36-marker mass cytometry panel. By applying an unbiased multidimensional approach, we observed differences in the balance between the naïve and memory compartments, with higher CD11c+ and double negative (DN-IgDnegCD27neg) memory (M)B-cells in individuals from rural tropical areas, and conversely lower naïve B-cells compared to residents from an area with less pathogen exposure. Furthermore, characterization of total B-cell populations, CD11c+, DN and Breg cells showed the emergence of specific memory clusters in individuals living in rural tropical areas. Some of these differences were more pronounced in children compared to adults and suggest that a higher microbial exposure accelerates memory B cell formation, which 'normalizes' with age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA