Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 168: 112767, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120217

RESUMEN

Beehive derivatives, including honeybee pollen (HBP), have been extensively studied for their beneficial health properties and potential therapeutic use. Its high polyphenol content gives it excellent antioxidant and antibacterial properties. Today its use is limited due to poor organoleptic properties, low solubility, stability, and permeability under physiological conditions. A novel edible multiple W/O/W nanoemulsion (BP-MNE) to encapsulate the HBP extract was designed and optimized to overcome these limitations. The new BP-MNE has a small size (∼100 nm), a zeta potential greater than +30 mV, and efficiently encapsulated phenolic compounds (∼82%). BP-MNE stability was measured under simulated physiological conditions and storage conditions (4 months); in both cases, stability was promoted. The formulation's antioxidant and antibacterial (Streptococcus pyogenes) activity was analyzed, obtaining a higher effect than the non-encapsulated compounds in both cases. In vitro permeability was tested, observing a high permeability of the phenolic compounds when they are nanoencapsulated. With these results, we propose our BP-MNE as an innovative solution to encapsulate complex matrices, such as HBP extract, as a platform to develop functional foods.


Asunto(s)
Antioxidantes , Fenoles , Abejas , Animales , Antioxidantes/farmacología , Chile , Antibacterianos/farmacología , Permeabilidad , Polen
2.
Biol Trace Elem Res ; 201(3): 1488-1502, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35362937

RESUMEN

Honeybee pollens are good food sources in terms of their mineral contents and are specific to the regions they are collected. In addition, they may be used as bioindicators in the assessment of environmental pollution based on their potentially toxic element contents. In the present study, mineral element composition and potentially toxic element levels of honeybee pollen samples collected from various cities in East Black Sea Region of Turkey (18 samples) were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave assisted acid digestion. The method validation was performed by using CRM (Certified Reference Material-BCR®279-Sea Lettuce-Ulva lactuca) to evaluate the accuracy and precision. Elemental composition of honeybee pollens were detected within the following ranges (minimum-maximum, mg kg-1 dry pollen); Mn (manganese): 11.579-117.349, Fe (Iron): 34.865-811.043, Zn (zinc): 17.707-56.223, Se (selenium): 0.422-0.722, Cr (chromium): 0.848-6.949, Cu (copper): 7.510-26.344, Mg (magnesium): 549.921-2149.716, Ca (calcium): 726.575-2201.837, Na (sodium): 36.518-120.283, Pb (lead): < 0.005-0.622, Cd (cadmium): 0.039-1.390, Ni (nickel): 2.317-21.710, and As (arsenic): 1.331-2.248. Recommended daily allowance, target hazard quotients, hazard index, and carcinogenic risk values of the pollens were calculated with the help of these results. In considering THQ values, pollens were determined to be safe for the consumption of both genders. Based on the carcinogenic risk calculation, most of the pollens examined in this study were categorized as moderately risky. Monitoring studies can be used to identify new sources of contamination or the origin and spread of a particular element. Hence, bee pollens can also be considered as potential bioindicators of toxic metal pollution. HIGHLIGHTS: • Mineral content and potentially toxic metal levels of 18 honeybee pollens were determined. • Recommended daily allowance (RDA) values were calculated. • The nutritional aspects of honeybee pollen samples were evaluated. • Hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR) estimation of honeybee pollens were assessed. • The potentiality of honeybee pollens as a bioindicator for pollution was discussed.


Asunto(s)
Biomarcadores Ambientales , Metales Pesados , Abejas , Femenino , Masculino , Animales , Turquía , Mar Negro , Análisis Espectral , Hierro/análisis , Polen/química , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo
3.
Heliyon ; 8(8): e10191, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36033283

RESUMEN

Nowadays, the exploration of natural materials for the production of nanoparticles is of special interest due to its ecofriendly nature. In this paper, we presented the biosynthesis of gold nanoparticles (AuNPs) in a green route by using water extract of pollen from Andean honeybees. Furthermore, AuNPs have been characterized by various techniques and tested for the catalytic reduction of 4-nitrophenol (4-NP). The biosynthesized AuNPs were analyzed using UV-vis spectroscopy, Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectroscopy to confirm their optical properties, stability, surface morphology, and purity. The synthesized AuNPs proved to be well dispersed, spherical, and triangular in shape, with particle sizes ranging from 7 to 42 nm having λmax at 530 nm. Moreover, FTIR suggests the capping of AuNPs with pollen constituents and XRD confirms the crystalline structure of AuNPs. Additionally, prepared AuNPs were demonstrated to be effective in reducing organic pollutant 4-NP to 4-aminophenol (k = 59.17898 × 10-3 min-1, R2 = 0.994). All of these studies have emphasized that AuNPs production can be scale up by using naturally available pollen grains and open up a new perspective for beekeepers.

4.
J Environ Sci Health B ; 57(7): 568-575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611769

RESUMEN

The aim of the current research was to determine the content of (potentially) toxic elements and insecticide residues in monofloral sunflower bee-collected pollen. For micro- and trace elements determination Inductively Coupled Plasma Optical Emission (ICP-OES) analytical method was used while insecticide residue content was monitored by applying Liquid Chromatography-Mass Spectrometry (LC-MS/MS) technique. In total, seventeen micro/trace elements were quantified. None of the twenty four examined insecticides were detected above the limit of detection (LOD) which makes studied sunflower bee-collected pollen eco-friendly both to bees and humans. Based on presence of several toxic as well as potentially toxic elements calculations for estimated weekly intakes (EWI), and oral intakes (OI) were made and used for health risk assessment based on the computation of two different health risk quotients (HQ)- acute (HQA) and long-term (HQL). The obtained results proved that all HQ values for adults were negligible or low except in case of HQL value for arsenic (0.32) which can be characterized as medium. However, in case of children much more precaution is needed due to significant HQL risk for arsenic (1.511). The attained data can help to make additional linkage between bee-collected pollen as food ingredients and potential benefits/risks for human health.


Asunto(s)
Arsénico , Helianthus , Insecticidas , Residuos de Plaguicidas , Oligoelementos , Animales , Arsénico/análisis , Abejas , Niño , Cromatografía Liquida , Humanos , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/toxicidad , Polen , Medición de Riesgo , Espectrometría de Masas en Tándem , Oligoelementos/análisis
5.
Front Pharmacol ; 13: 775219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321331

RESUMEN

Honeybee pollen (HBP) chemical composition is highly variable conforming to the floral and geographical origin of the pollen grains. The beneficial effects and functional properties of the HBP are well-known and have been mainly attributed to their high content of antioxidant polyphenols. In this work, twelve HBPs samples from the Southern region of Chile (X Región de Los Lagos) were characterized for the first time according to their botanical origin, phenolic composition, and antioxidant activity. The in vitro gastrointestinal digestion assay was done to simulate the human upper digestive tract. Selected honeybee pollen extracts (HBPEs) were assessed as bioaccessible fractions during an in vitro gastrointestinal digestion. Contents of phenolic compounds, antioxidant capacity, and recovery index of quercetin, myricetin, and cinnamic acid were monitored in different steps of gastrointestinal digestion. Furthermore, the protective effect of in vitro digested HBP towards DNA damage induced by peroxyl radicals was evaluated. The introduced species Brassica rapa L. (Brassicaceae), Lotus pedunculatus Cav. (Fabaceae), and Ulex europaeus L. (Fabaceae) predominated in all the HBPs analyzed, while the native species Buddleja globosa Hope (Scrophulariaceae), Luma apiculata (DC.) Burret (Myrtaceae), Embothrium coccineum J.R. Forst. & G. Forst. (Proteaceae) and Eucryphia cordifolia Cav. (Cunoniaceae) appeared less frequently. The content of polyphenols and antioxidant capacity in HBPEs achieved full bioaccessibility at the end of the intestinal digestion step. However, results obtained by a state-of-the-art technique (i.e. HPLC-DAD) demonstrated relatively low values of bioaccessible quercetin and cinnamic acid after the digestion process. In contrast, myricetin showed a high bioaccessibility in the intestinal digestion steps. The protective effect of in vitro digested HBP towards DNA damage induced by peroxyl radicals showed promising results (up to 91.2% protection). In conclusion, HBPs from the X Region de Los Lagos are rich sources of phenolic antioxidants that protect DNA from strand breakage. Therefore, the potential of HBPEs in preventing gastric and/or intestinal cancer should be further considered.

6.
Animals (Basel) ; 12(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35327073

RESUMEN

The awareness of the correlation between administered diet, fish health and products' quality has led to the increase in the research for innovative and functional feed ingredients. Herein, a plant-derived product rich in bioactive compounds, such as honeybee pollen (HBP), was included as raw (HBP) and as Supercritical Fluid Extracted (SFE) pollen (HBP_SFE) in the diet for gilthead seabream (Sparus aurata). The experiment was carried out on 90 fish with an average body weight of 294.7 ± 12.8 g, divided into five groups, according to the administration of five diets for 30 days: control diet (CTR); two diets containing HBP at 5% (P5) and at 10% (P10) level of inclusion; two diets containing HBP_SFE, at 0.5% (E0.5) and at 1% (E1) level of inclusion. Their effects were evaluated on 60 specimens (336.2 ± 11.4 g average final body weight) considering the fish growth, the expression of some hepatic genes involved in the inflammatory response (il-1ß, il-6 and il-8) through quantitative real-time PCR, and physico-chemical characterization (namely color, texture, water holding capacity, fatty acid profile and lipid peroxidation) of the fish fillets monitored at the beginning (day 0) and after 110 days of storage at −20 °C. The results obtained showed that the treatment with diet E1 determined the up-regulation of il-1ß, il-6, and il-8 (p < 0.05); however, this supplementation did not significantly contribute to limiting the oxidative stress. Nevertheless, no detrimental effect on color and the other physical characteristics was observed. These results suggest that a low level of HBP_SFE could be potentially utilized in aquaculture as an immunostimulant more than an antioxidant, but further investigation is necessary.

7.
Animals (Basel) ; 13(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36611741

RESUMEN

This study aimed to determine the dietary effects of honeybee pollen (BP) on growth parameters, intestinal microbiota, hepatic histoarchitecture, and intestinal histomorphometry of African catfish Clarias gariepinus juveniles. The feeding experiment was carried out in a recirculating aquaculture system under controlled conditions for 21 days to achieve more than a 10-fold increase in weight in fish from the control group. Fish were fed well-balanced commercial feed without any supplements and served as a reference group (group C) and other diets enriched with varying BP levels as 1% (BP1), 2% (BP2), and 3% (BP3). Results showed a significant (p < 0.05) effect of the dietary BP not only on the growth parameters (such as final body weight: 5.0 g to 6.6−7.5 g, weight gain: 0.23 g/d to 0.31−0.35 g/d, body length: 84.7 mm to 93.8−95.9 mm, and specific growth rate: 11.7%/d to 13.1−13.7%/d, group C vs. experimental groups, respectively) but also on the development of beneficially important gut microbiota, such as lactic acid-producing bacteria. In BP-enriched groups, an average of 45% higher body weight gain was observed compared to those reared in the control group. The histological analysis showed that dietary BP may have a positive effect on the development of the intestinal tract and may enhance the absorption of nutrients with the potential ability to maintain a normal hepatic histoarchitecture of the treated African catfish. The results obtained suggest the optimum level of BP additive to feed for African catfish should be 1%.

8.
Vet Med (Praha) ; 67(4): 179-189, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39170808

RESUMEN

The present study was undertaken to investigate the possible stimulating effects of Nigella sativa (N. sativa) honey, natural Saudi Sider honey, and honeybee pollen to the in vitro maturation (IVM) medium of sheep oocytes on their subsequent development. Hence, immature oocytes were exposed to various concentrations of natural Nigella sativa (N. sativa), and Saudi Sider honey (5, 10, and 20%), as well as honeybee pollen (1, 10, 50 µg/ml) during an in vitro maturation period (24 hours). After the exposure time, the maturation rate, glutathione (GSH) concentration, and candidate gene expression (GDF-9, MPF, CMOS, IGF-1, and BAX) were evaluated. Our results showed that the maturation rate was higher in the groups challenged with the lowest level of the bee products (5% and 1 µg/ml) when compared with that in the control group; where the mean number of oocytes in the metaphase II stage reached 0.360 for the honeybee pollen-treated group, 0.293 for the N. sativa-treated group, and 0.203 for the natural Saudi Sider honey-treated group. The glutathione level was significantly increased in the group exposed to N. sativa honey when compared with the other groups. Concerning the gene expression results, the Saudi Sider honey treatment showed the best results for all the genes except the CMOS gene, which was significantly higher than the GI and GII groups and lower than the GIV group and the BAX gene which did not show a significant difference when compared with the other groups. In conclusion, the addition of natural honey and honeybee pollen at a low concentration to an IVM medium improved the in vitro maturation rate, increased the glutathione level, and gene expression of the in vitro matured ovine oocytes.

9.
Environ Sci Pollut Res Int ; 27(25): 31350-31356, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32488717

RESUMEN

This study aimed to investigate the effect of honeybee pollen as an antioxidant source in a maturation medium of sheep oocytes on the in vitro maturation rate, glutathione concentration, and gene expression. To our knowledge, this study might be the first of its kind in this field. Sheep oocytes were cultured in vitro with honeybee pollen at four different concentrations (0.0, 1.0, 10.0, and 50.0 µg/ml). The results indicated that the ratio of oocytes that reached metaphase II stage was higher in the honeybee pollen-treated groups than in the control group (p ≤ 0.05). The reduced glutathione (GSH) mean content of matured oocytes was 9.85 nmol/25 oocytes, when honeybee pollen was added to the in vitro maturation (IVM) medium at a concentration of 1.0 µg/ml, compared with 5.84 and 4.44 nmol when using 10.0 and 50.0 µg/ml honeybee pollen, respectively. On the other hand, there was no significant difference in glutathione concentration between the control and 1.0 µg/ml honeybee pollen groups. Expression of candidate genes (GDF-9, BAX, Cyclin B, C-MOS, and IGF1) was upregulated in oocytes cultured with honeybee pollen when compared with oocytes cultured without honeybee pollen. In conclusion, the addition of honeybee pollen at a concentration of 1.0 µg/ml to IVM medium improved the in vitro maturation rate of sheep oocytes, increased the glutathione concentration, and improved gene expression.


Asunto(s)
Antioxidantes , Oocitos , Animales , Abejas , Expresión Génica , Glutatión , Polen , Ovinos
10.
J Food Sci ; 85(3): 824-833, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32078757

RESUMEN

The crude flavonoid extract of pollen (CFP) of four species of honeybee pollens were extracted with ethanol, and the total flavonoid contents ranged from 3.4 to 14.5 mg rutin/g dry weight. The antioxidant activities of the CFPs were evaluated from both chemical and cytological aspects. Comprehensive antioxidant scores were determined based on these two evaluation systems. The results showed that canola CFP had the highest antioxidant capacity among the four CFPs. A cytotoxicity assay was conducted to assess the safety threshold of the CFPs, and canola CFP was proved to be the least toxic to vascular endothelial cell. Of the four tested CFPs, this research suggests that canola CFP is the most promising natural antioxidant. In addition, high-performance liquid chromatography (HPLC) analysis detected seven flavonoid glycosides in the hydrolysates of the four CFPs. Among them, quercetin and kaempferol were present in all four honeybee pollen extracts, but there were significant differences between their contents. A correlation analysis revealed a strong correlation between the content of quercetin in the pollen extract and the extract's antioxidant activity. PRACTICAL APPLICATION: Many varieties of honeybee pollen are commercially available. The results of this study help guide consumers to choose honeybee pollens that have a better antioxidant effect. This report can also provide guidance and data in support of the development of honeybee pollen health products.


Asunto(s)
Antioxidantes/análisis , Extractos Vegetales/análisis , Polen/química , Animales , Abejas , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Glicósidos/análisis , Quempferoles/análisis , Quercetina/análisis , Rutina/análisis
11.
Materials (Basel) ; 9(5)2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28773484

RESUMEN

Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA