Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Small ; : e2401376, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252647

RESUMEN

Depending on their aspect ratio, rod-shaped particles exhibit a much richer 2D and 3D phase behavior than their spherical counterparts, with additional nematic and smectic phases accompanied by defined orientational ordering. While the phase diagram of colloidal hard rods is extensively explored, little is known about the influence of softness in such systems, partly due to the absence of appropriate model systems. Additionally, investigating higher volume fractions for long rods is usually complicated because non-equilibrium dynamical arrest is likely to precede the formation of more defined states. This has motivated us to develop micrometric rod-like microgels with limited sedimentation that can respond to temperature and reversibly reorganize into defined phases via annealing and seeding procedures. A detailed procedure is presented for synthesizing rod-shaped hollow poly(N-isopropylacrylamide) microgels using micrometric silica rods as sacrificial templates. Their morphological characterization is conducted through a combination of microscopy and light scattering techniques, evidencing the unconstrained swelling of rod-shaped hollow microgels compared to core-shell microgel rods. Different aspects of their assembly in dispersion and at interfaces are further tested to illustrate the opportunities and challenges offered by such systems that combine softness, anisotropy, and thermoresponsivity.

2.
ACS Nano ; 17(8): 7257-7271, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37053566

RESUMEN

Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.

3.
Macromol Biosci ; 23(8): e2200456, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36605024

RESUMEN

Depending on their architectural and chemical design, microgels can selectively take up and release small molecules by changing the environmental properties, or capture and protect their cargo from the surrounding conditions. These outstanding properties make them promising candidates for use in biomedical applications as delivery or carrier systems. In this study, hollow anionic p(N-isopropylacrylamid-e-co-itaconic acid) microgels are synthesized and analyzed regarding their size, charge, and charge distribution. Furthermore, interactions between these microgels and the model protein cytochrome c are investigated as a function of pH. In this system, pH serves as a switch for the electrostatic interactions to alternate between no interaction, attraction, and repulsion. UV-vis spectroscopy is used to quantitatively study the encapsulation of cytochrome c and possible leakage. Additionally, fluorescence-lifetime images unravel the spatial distribution of the protein within the hollow microgels as a function of pH. These analyses show that cytochrome c mainly remains entrapped in the microgel, with pH controlling the localization of the protein - either in the microgel's cavity or in its network. This significantly differentiates these hollow microgels from microgels with similar chemical composition but without a solvent filled cavity.


Asunto(s)
Nanoestructuras , Cápsulas/química , Concentración de Iones de Hidrógeno , Microgeles/química , Citocromos c/química , Aniones/química
4.
Polymers (Basel) ; 11(11)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731709

RESUMEN

Double emulsions are useful geometries as templates for core-shell particles, hollow sphere capsules, and for the production of biomedical delivery vehicles. In microfluidics, two approaches are currently being pursued for the preparation of microfluidic double emulsion devices. The first approach utilizes soft lithography, where many identical double-flow-focusing channel geometries are produced in a hydrophobic silicone matrix. This technique requires selective surface modification of the respective channel sections to facilitate alternating wetting conditions of the channel walls to obtain monodisperse double emulsion droplets. The second technique relies on tapered glass capillaries, which are coaxially aligned, so that double emulsions are produced after flow focusing of two co-flowing streams. This technique does not require surface modification of the capillaries, as only the continuous phase is in contact with the emulsifying orifice; however, these devices cannot be fabricated in a reproducible manner, which results in polydisperse double emulsion droplets, if these capillary devices were to be parallelized. Here, we present 3D printing as a means to generate four identical and parallelized capillary device architectures, which produce monodisperse double emulsions with droplet diameters in the range of 500 µm. We demonstrate high throughput synthesis of W/O/W and O/W/O double emulsions, without the need for time-consuming surface treatment of the 3D printed microfluidic device architecture. Finally, we show that we can apply this device platform to generate hollow sphere microgels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA