Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405284, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285650

RESUMEN

The enhancement of the photovoltaic performance upon the aging process at particular environment is often observed in perovskite solar cells (PSCs), particularly for the devices with 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM). In this work, for the first time the effect of aging the typical n-i-p PSCs employing nickel phthalocyanine (coded as Bis-PF-Ni) solely as dopant-free HTM is investigated and as an additive in spiro-OMeTAD solution. This study reveals that the prolong aging of these devices at dry air condition (RH = 2%, 25 °C) is beneficial for the improvement of their performances. Various bulk and surface characterization techniques are utilized to understand the factors behind the spontaneous efficiency enhancement of the devices after storage. As a result, the changes in properties of the Bis-PF-Ni layer are observed and at perovskite/Bis-PF-Ni interface, which ultimately improves the charge transport and reduces non-radiative recombination. In addition, the devices with Bis-PF-Ni HTM reveal enhanced long-term ambient and thermal stability compared to the PSCs based on doped spiro-OMeTAD.

2.
Angew Chem Int Ed Engl ; : e202411217, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103975

RESUMEN

Hole-transporting materials (HTMs) are crucial for obtaining the stability and high efficiency of perovskite solar cells (PSCs). However, the current state-of-the-art n-i-p PSCs relied on the use of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) exhibit inferior intrinsic and ambient stability due to the p-dopant and hydrophilic Li-TFSI additive. In this study, a new spiro-type HTM with a critical quasi-planar core (Z-W-03) is developed to improve both the thermal and ambient stability of PSCs. The results suggest that the planar carbazole structure effectively passivates the trap states compared to the triphenylamine with a propeller-like conformation in spiro-OMeTAD. This passivation effect leads to the shallower trap states when the quasi-planar HTMs interact with the Pb-dimer. Consequently, the device using Z-W-03 achieves a higher Voc of 1.178 V compared to the spiro-OMeTAD's 1.155 V, resulting in an enhanced efficiency of 24.02%. In addition, the double-column π-π stacking of Z-W-03 results in high hole mobility (~10-4 cm2 V-1 s-1) even without p-dopant. Moreover, when the surface interface is modified, the undoped Z-W-03 device can achieve an efficiency of nearly 23%. Compared to the PSCs using spiro-OMeTAD, those with Z-W-03 exhibit enhanced stability under N2 and ambient conditions.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124713, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943758

RESUMEN

Newly designed and synthesized derivatives of pentaphenylbenzene with methoxy-substituted carbazolyl or diphenylamino moieties were investigated to estimate their applicability as hole transport materials. Both the compounds exhibit high thermal stability. The intramolecular charge transfer is blocked for the film of the compound containing diphenylamino groups. The intermolecular charge transfer is induced in the film of carbazolyl-containing compound. The derivative of pentaphenylbenzene and diphenylamine exhibits higher hole drift mobility (2.4·10-3 cm2/V·s at the electric field of 5.5·105 V/cm) and by 0.1 eV lower ionization potential than the carbazolyl-containing compound. Both the compounds were utilized as hole-transporting materials in a series of organic light emitting diodes (OLEDs) based on of thermally activated delayed fluorescence. With the maximum values of external quantum efficiency of 25.9 % and power efficiency of 43.4 lm/W, OLEDs containing the layers of the synthesized compounds outperformed the device based on TCTA by 4 %, without the change in spectral properties. Variable angle spectroscopic ellipsometry revealed the moderate average roughness of the films of the compound deposited by the thermal vacuum evaporation technique with an arithmetic mean deviation of not more than 0.8 nm. The prominent hole transport characteristics of the compounds make them good candidates for utilization in optoelectronic devices.

4.
Small ; 20(33): e2311914, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38566542

RESUMEN

The high-performance hole transporting material (HTM) is one of the most important components for the perovskite solar cells (PSCs) in promoting power conversion efficiency (PCE). However, the low conductivity of HTMs and their additional requirements for doping and post-oxidation greatly limits the device performance. In this work, three novel pyrene-based derivatives containing methoxy-substituted triphenylamines units (PyTPA, PyTPA-OH and PyTPA-2OH) are designed and synthesized, where different numbers of hydroxyl groups are connected at the 2- or 2,7-positions of the pyrene core. These hydroxyl groups at the 2- or 2,7-positions of pyrene play a significantly role to enhance the intermolecular interactions that are able to generate in situ radicals with the assistance of visible light irradiation, resulting in enhanced hole transferring ability, as well as an enhanced conductivity and suppressed recombination. These pyrene-core based HTMs exhibit excellent performance in PSCs, which possess a higher PCE than those control devices using the traditional spiro-OMeTAD as the HTM. The best performance can be found in the devices with PyTPA-2OH. It has an average PCE of 23.44% (PCEmax = 23.50%), which is the highest PCE among the reported PSCs with the pyrene-core based HTMs up to date. This research offers a novel avenue to design a dopant-free HTM by the combination of the pyrene core, methoxy triphenylamines, and hydroxy groups.

5.
Angew Chem Int Ed Engl ; 63(33): e202403068, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38687308

RESUMEN

Organic self-assembled molecules (OSAMs) based hole-transporting materials play a pivotal role in achieving highly efficient and stable inverted perovskite solar cells (IPSCs). However, the reported carbazol-based OSAMs have serious drawbacks, such as poor wettability for perovskite solution spreading due to the nonpolar surface, worse matched energy arrangement with perovskite, and limited molecular species, which greatly limit the device performance. To address above problems, a novel OSAM [4-(3,6-glycol monomethyl ether-9H-carbazol-9-yl) butyl]phosphonic acid (GM-4PACz) was synthesized as hole-transporting material by introducing glycol monomethyl ether (GM) side chains at carbazolyl unit. GM groups enhance the surface energy of Indium Tin Oxide (ITO)/SAM substrate to facilitate the nucleation and growth of up perovskite film, suppress cation defects, release the residual stress at SAM/perovskite interface, and evaluate energy level for matching with perovskite. Consequently, the GM-4PACz based IPSC achieves a champion PCE of 25.52 %, a respectable open-circuit voltage (VOC) of 1.21 V, a high stability, possessing 93.29 % and 91.75 % of their initial efficiency after aging in air for 2000 h or tracking at maximum power point for 1000 h, respectively.

6.
Materials (Basel) ; 17(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38673266

RESUMEN

This paper proposes molecular and supramolecular concepts for potential application in perovskite solar cells. New air-stable symmetrical imine, with thiadiazole moieties PPL2: (5E,6E)-N2,N5-bis(4-(diphenylamino)benzylidene)-1,3,4-thiadiazole-2,5-diamine), as a hole-transporting material was synthesised in a single-step reaction, starting with commercially available and relatively inexpensive reagents, resulting in a reduction in the cost of the final product compared to Spiro-OMeTAD. Moreover, camphorsulfonic acid (CSA) in both enantiomeric forms was used to change the HOMO-LUMO levels and electric properties of the investigated imine-forming complexes. Electric, optical, thermal, and structural studies of the imine and its complexes with CSA were carried out to characterise the new material. Imine and imine/CSA complexes were also characterised in depth by the proton Nuclear Magnetic Resonance 1H NMR method. The position of nitrogen in the thidiazole ring influences the basicity of donor centres, which results in protonation in the imine bond. Simple devices of ITO/imine (with or without CSA(-) or CSA(+))/Ag/ITO architecture were constructed, and a thermographic camera was used to find the defects in the created devices. Electric behaviour was also studied to demonstrate conductivity properties under the forward current. Finally, the electrical properties of imine and its protonated form with CSA were compared with Spiro-OMeTAD. In general, the analysis of thermal images showed a very similar response of the samples to the applied potential in terms of the homogeneity of the formed organic layer. The TGA analysis showed that the investigated imine exhibits good thermal stability in air and argon atmospheres.

7.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38437457

RESUMEN

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

8.
ACS Appl Mater Interfaces ; 16(6): 7310-7316, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317431

RESUMEN

Molecular hole-transporting materials (HTMs) having triphenylethylene central core were designed, synthesized, and employed in perovskite solar cell (PSC) devices. The synthesized HTM derivatives were obtained in a two- or three-step synthetic procedure, and their characteristics were analyzed by various thermoanalytical, optical, photophysical, and photovoltaic techniques. The most efficient PSC device recorded a 23.43% power conversion efficiency. Furthermore, the longevity of the device employing V1509 HTM surpassed that of PSC with state-of-art spiro-OMeTAD as the reference HTM.

9.
ChemSusChem ; 17(10): e202301508, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38280139

RESUMEN

Hole mobility is critical to the power conversion efficiencies of perovskite solar cells (PSCs). Organic small-molecule hole-transporting materials (HTMs) have attracted considerable interest in PSCs due to their structural flexibility and operational durability, but they suffer from modest hole mobility. On the other hand, inorganic HTMs with good hole mobility are inflexible in structural variation and exhibit unsatisfactory cell efficiency. In this study, a ligand BT28 and its zinc-based coordination complex BTZ30 were synthesized, characterized, and investigated as HTMs for PSC applications. The mixed-halide perovskites can be grown uniformly with large crystalline grains on both HTMs, which exhibit similar optical and electrochemical properties. However, it was discovered that the BTZ30-based solar cell exhibited an open-circuit voltage of 1.0817 V and a high short-circuit current density of 23.1392 mA cm-2 with a champion power conversion efficiency of close to 20 %. The performance difference between the two HTMs can be attributed to the difference in their hole mobilities, which is 63.31 % higher for BTZ30 than BT28. The comparison of non-metal and metal HTMs revealed the importance of considering hybrid structures to overcome some shortcomings associated with organic and inorganic HTMs and achieve high-performance PSCs.

10.
ACS Appl Mater Interfaces ; 16(3): 3744-3754, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38224058

RESUMEN

In the realm of organic solar cells (OSCs), the width of the depletion region at the anode interface is a critical factor that adversely impacts the open-circuit voltage (Voc) and the power conversion efficiency (PCE). To address this challenge, a novel approach involving a conjugated polyelectrolyte (CPE)-based composite, PCP-2F-Li:POM, has been developed. This composite serves as a solution-processed hole transport layer (HTL), effectively minimizing the depletion region width in high-performance OSCs. The innovative aspect of PCP-2F-Li:POM lies in its "mutual doping" mechanism. Polyoxometalate (POM) is utilized as a dopant, facilitating the formation of p-doped CPE and n-doped POM within the composite. This results in a substantial increase in doping density, nearly 2 orders of magnitude higher than that observed in unmodified CPE. Consequently, the width of depletion region is markedly reduced, shrinking from 76.4 to 6.0 nm. This reduction plays a pivotal role in enhancing hole transport via the tunneling effect. The practical impact of this development is notable. It leads to an increase in Voc from 0.84 to 0.86 V, thereby contributing significantly to an impressive PCE of 18.04% in OSCs. Moreover, the compatibility of PCP-2F-Li:POM with large-area processing techniques underscores its potential as a viable HTL material for future practical applications. Additionally, its contribution to the enhanced long-term stability of OSCs further bolsters its suitability for practical applications.

11.
ACS Nano ; 18(4): 3276-3285, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252155

RESUMEN

Although protonated polyoxometalates (POMs) are promising hole-transporting layer (HTL) materials for optoelectronic devices owing to their excellent hole collection/injection property, pH neutrality, and noncorrosiveness, POMs are seldom used as high-performance HTL materials. Herein, we designed and synthesized a series of mixed-additive POMs with pH-neutral counterions (NH4+, K+, and Na+) as HTL materials. X-ray photoelectron spectroscopy and single-crystal X-ray analyses indicated that the use of the lacunary heteropolyanion [P2W15O56]12- as an intermediate ensured successful incorporation of the counterions into the mixed-addenda POMs without causing deterioration of the POM frameworks. The hole-transporting layer performance of POM-NH4, which was characterized by a high work function and good conductivity and could be prepared using a low-cost method surpassed those of its protonated counterpart POM-4 and many classic HTL materials. An organic solar cell (OSC) modified with POM-NH4 delivered a power conversion efficiency of 18.0%, which was the highest photovoltaic efficiency achieved by POM-based OSCs to date. Moreover, an HTL material based on POM-NH4 reduced the turn-on voltage of an organic light-emitting diode from 4.2 to 3.2 V. The results of this study suggest that POMs are promising alternatives to the classic HTL materials owing to their excellent hole-collection ability, low costs, neutral nature, and high-chemical stability.

12.
Chemistry ; 30(10): e202302552, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37997029

RESUMEN

This work demonstrated the first synthetic application of direct C-H olefinations in the step-saving preparation of various hole-transporting materials (HTM) for efficient perovskite solar cells (PSC). Cross-dehydrogenative couplings of naphthodithiophene (NDT) with vinyl arenes under palladium-catalysis facilely generated various new oligo(hetero)aryls with internal alkenes. Reaction conditions were optimized, which gave the product isolated yields of up to 71 % with high (E)-stereoselectivity. These readily accessible NDT core-based small molecules involving olefin as π-spacers displayed immediate power conversion efficiencies of up to 17.2 % without a device oxidation process that is required for the commercially available spiro-OMeTAD and most other existing HTMs while fabricated in corresponding PSC devices.

13.
ACS Appl Mater Interfaces ; 15(37): 44043-44053, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695887

RESUMEN

Perovskite quantum dot light-emitting diodes (Pe-QLEDs) have been shown as promising candidates for next-generation displays and lightings due to their unique feature of wide color gamut and high color saturation. Hole-transporting materials (HTMs) play crucial roles in the device performance and stability of Pe-QLEDs. However, small-molecule HTMs have been less studied in Pe-QLEDs due to their poor solvent resistance and low hole mobility. In this work, three novel small-molecule HTMs employing benzimidazole as the center core, named X4, X5, and X6, were designed and synthesized for application in Pe-QLEDs. One of the tailored HTM-X6 exhibits excellent solvent resistant ability to the perovskite quantum dot (QD) inks due to its proper solubility and low surface energy. Our result clearly demonstrated that the synergistic effect of poor solubility and low surface energy facilitates the achievement of good solvent resistance to perovskite QD inks. As a result, a promising maximal external quantum efficiency (EQE) of 14.1% is achieved in X6-based CsPbBr3 Pe-QLEDs, which is much higher than that of X4 (9.16%) and X5 (6.60%)-based devices, which is comparable to the PTAA reference (EQE ∼ 15.8%) under the same conditions. To the best of our knowledge, this is the first example that a benzimidazole-based small-molecule HTM demonstrated a good application in Pe-QLEDs. Our work provides new guidance for the rational design of small-molecule HTMs with high solvent resistance for efficient Pe-QLEDs and other photoelectronic devices.

14.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37446451

RESUMEN

We designed and synthesized a new indolocarbazole-based polymer, poly(N,N-diphenyl(5,11-dihexylindolo[3,2,1-jk]carbazol-2-yl)amine) (PICA), for solution-processed organic light-emitting diodes (OLEDs). The highest occupied and lowest unoccupied molecular orbital energy levels of this polymer, -5.25 and -2.46 eV, respectively, are suitable for hole transport from the anode to the emissive layer. PICA was photo-crosslinked by UV irradiation with ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate) (FPA) as the photoinitiator. Successful crosslinking was confirmed by a decreased intensity in the azide-stretching FT-IR peak and solvent test with toluene (a suitable solvent for PICA). The PICA film photo-crosslinked with 3 wt% FPA showed enhanced solvent resistance (90%) compared to the non-crosslinked neat PICA film (<20%). Moreover, OLED devices using PICA-based hole-transporting layers exhibited better device performance (EQE/LE/PE: 8.88%/12.97/8.12 in red devices, 10.84%/38.47 cd/A/25.06 lm/W in green devices) than those using poly-TPD:FPA. We demonstrated that the photo-crosslinked PICA can be applied as a hole-transporting layer in solution-processed OLEDs.

15.
Nanomaterials (Basel) ; 13(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513053

RESUMEN

Hole-transporting materials (HTMs) have demonstrated their crucial role in promoting charge extraction, interface recombination, and device stability in perovskite solar cells (PSCs). Herein, we present the synthesis of a novel dopant-free spiro-type fluorine core-based HTM with four ethoxytriisopropylsilane groups (Syl-SC) for inverted planar perovskite solar cells (iPSCs). The thickness of the Syl-SC influences the performance of iPSCs. The best-performing iPSC is achieved with a 0.8 mg/mL Syl-SC solution (ca. 15 nm thick) and exhibits a power conversion efficiency (PCE) of 15.77%, with Jsc = 20.00 mA/cm2, Voc = 1.006 V, and FF = 80.10%. As compared to devices based on PEDOT:PSS, the iPSCs based on Syl-SC exhibit a higher Voc, leading to a higher PCE. Additionally, it has been found that Syl-SC can more effectively suppress charge interfacial recombination in comparison to PEDOT:PSS, which results in an improvement in fill factor. Therefore, Syl-SC, a facilely processed and efficient hole-transporting material, presents a promising cost-effective alternative for inverted perovskite solar cells.

16.
ACS Appl Mater Interfaces ; 15(26): 31514-31524, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37345636

RESUMEN

The optoelectronic devices endowing multifunctionality while utilizing a single low-cost material have always been challenging. For this purpose, we adopted a random ternary copolymerization strategy for designing two terpolymers, namely TP-0.8-EG and TP-0.8-TEG comprising a benzothiadiazole (BT)-benzo[1,2-b:4,5-b']dithiophene-diketopyrrolo[3,4-c]pyrrole (A1-π-D-π-A2) backbone. The figure of merits of the narrow band gap TP-0.8-EG terpolymer include deepened frontier energy levels, high hole mobility, better film formability, enriched multifunctionality, and passivation capability. Accordingly, the suitable electronic properties of TP-0.8-EG revealed that it can function as a dopant-free hole-transporting material in perovskite solar cells (PSCs) as well as the third component in organic solar cells (OSCs). Remarkably, TP-0.8-EG outperforms by exhibiting a higher power conversion efficiency (PCE) of 20.9% over TP-0.8-TEG (PCE of 18.3%) and BT-UF (PCE of 14.6%) in dopant-free PSCs. Interestingly, TP-0.8-EG fabricated along with PM6:Y7 displayed a high PCE of 16.52% in ternary OSCs. Also, TP-0.8-EG established good device storage stabilities (85 and 83% of their initial PCEs for 1200 and 500 h) in dopant-free PSC as well as OSC devices. Notably, the devices with TP-0.8-EG showed excellent thermal and moisture stabilities. To the best of our knowledge, A1-π-D-π-A2 terpolymer performing both in PSCs and OSCs with decent efficiencies and good device stabilities is a rare scenario.

17.
Chemistry ; 29(43): e202301055, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37208940

RESUMEN

Low band gap materials have always been a focus of attention due to their potential applications in various fields. In this work, a series of asymmetric bistricyclic aromatic ene (BAE) compounds with fluorenylidene-cyclopentadithiophene (FYT) skeleton were facially synthesized, which were modified with different substituents (-OMe, -SMe). The FYT core exhibit twisted C=C bond with dihedral angles around 30°, and the introduction of -SMe group can provide additional S⋅⋅⋅S interaction between molecules, which is conducive to the charge transporting. The UV-Vis spectra, electrochemistry and photoelectron spectroscopy revealed that these compounds have relatively narrow band gaps, particularly, the -SMe modified compounds have slightly lower HOMO and Fermi energy levels than that of the -OMe modified compounds. Furthermore, PSCs devices were fabricated with the three compounds as HTMs, and FYT-DSDPA exhibit the best performance among them, revealing the fine-tuning band structure could influence properties of HTMs.

18.
ACS Appl Mater Interfaces ; 15(18): 22310-22319, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37099614

RESUMEN

Interfaces between photoactive perovskite layer and selective contacts play a key role in the performance of perovskite solar cells (PSCs). The properties of the interface can be modified by the introduction of molecular interlayers between the halide perovskite and the transporting layers. Herein, two novel structurally related molecules, 1,3,5-tris(α-carbolin-6-yl)benzene (TACB) and the hexamethylated derivative of truxenotris(7-azaindole) (TTAI), are reported. Both molecules have the ability to self-assemble through reciprocal hydrogen bond interactions, but they have different degrees of conformational freedom. The benefits of combining these tripodal 2D-self-assembled small molecular materials with well-known hole transporting layers (HTLs), such as PEDOT:PSS and PTAA, in PSCs with inverted configuration are described. The use of these molecules, particularly the more rigid TTAI, enhanced the charge extraction efficiency and reduced the charge recombination. Consequently, an improved photovoltaic performance was achieved in comparison to the devices fabricated with the standard HTLs.

19.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903529

RESUMEN

A group of di(arylcarbazole)-substituted oxetanes has been prepared in Suzuki reactions by using the key starting material 3,3-di[3-iodocarbazol-9-yl]methyloxetane and various boronic acids (fluorophenylboronic acid, phenylboronic acid or naphthalene-1-boronic acid). Full characterization of their structure has been presented. The low molar mass compounds represent materials having high thermal stability with 5% mass loss thermal degradation temperatures in the range of 371-391 °C. Glass transition temperatures of the materials are also very high and range from 107 °C to 142 °C, which is a big advantage for formation of stable amorphous layers for optoelectronic devices, i.e., organic light emitting diodes. Hole transporting properties of the prepared materials were confirmed in formed organic light emitting diodes with tris(quinolin-8-olato)aluminium (Alq3) as a green emitter, which also served as an electron transporting layer. In the device's materials, 3,3-di[3-phenylcarbazol-9-yl]methyloxetane (5) and 3,3-di[3-(1-naphthyl)carbazol-9-yl]methyloxetane (6) demonstrated superior hole transporting properties than that of material 3,3-di[3-(4-flourophenyl)carbazol-9-yl]methyloxetane (4) based device. When material 5 was used in the device structure, the OLED demonstrated rather low turn-on voltage of 3.7 V, luminous efficiency of 4.2 cd/A, power efficiency of 2.6 lm/W and maximal brightness exceeding 11670 cd/m2. HTL of 6 based device also showed exclusive OLED characteristics. The device was characterized by turn-on voltage of 3.4 V, maximum brightness of 13193 cd/m2, luminous efficiency of 3.8 cd/A and power efficiency of 2.6 lm/W. An additional hole injecting-transporting layer (HI-TL) of PEDOT considerably improved functions of the device with HTL of compound 4. The modified OLED with a layer of the derivative 4 demonstrated exclusive characteristics with turn-on voltage of 3.9 V, high luminous efficiency of 4.7 cd/A, power efficiency of 2.6 lm/W and maximal brightness exceeding 21,000 cd/m2. These observations confirmed that the prepared materials have a big potential in the field of optoelectronics.

20.
Angew Chem Int Ed Engl ; 62(21): e202301958, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36930826

RESUMEN

A facile strategy was developed here to improve the film quality of nickel-based hole transporting layer (HTL) for efficient organic solar cell (OSC) applications. To prevent the agglomeration of Ni(NO3 )2 during film deposition, acetylacetonate was added into the precursor solution, which led to the formation of an amorphous and glass-like state. After thermal annealing (TA) treatment, the film-forming ability could be further improved. The additional UV-ozone (UVO) treatment continuously improved the film quality and increased the work function and conductivity of such HTL. The resulting TA & UVO modified Ni(NO3 )2 & Hacac HTL produced highly efficient organic solar cells with exciting power conversion efficiencies of 18.42 % and 19.02 % for PM6 : BTP-eC9 and D18 : BTP-Th devices, respectively, much higher than the control PEDOT : PSS devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA