Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35215607

RESUMEN

Semiflexible nunchucks are block copolymers, which consist of two long blocks of high bending stiffness jointed together by a short block of low bending stiffness. Semiflexible nunchucks that consist of two DNA nanorods jointed by a short segment of double-stranded (ds) DNA and confined in two dimensions have been used in recent experiments by Fygenson and coworkers as a tool to magnify the bending fluctuations of the linking dsDNA, which in turn are used to deduce the persistence length of dsDNA. In a recent theoretical analysis, we showed that in a semiflexible nunchuck with one end grafted, the fluctuations of the position of the free end that is transverse to the grafting direction exhibit a pronounced bimodality, provided that the bending stiffness of the hinge is not very large. In this article, we theoretically analyse a grafted semiflexible nunchuck with a magnetic bead attached to its free end. We show that a transverse magnetic field induces an asymmetry in the bimodal distribution of the transverse fluctuations of the free end. This asymmetry is very sensitive to interactions with a magnetic field and, in principle, could be used in magnetometry (the measurement of a magnetic field or the magnetic moment of the bead). We also investigate how the response of the bimodal distribution of the transverse fluctuations of the free end to a magnetic field depends on the bending stiffness of the nunchuck hinge. In addition, we analyse the closely related systems of a single filament and two filaments jointed at a kink point with one end grafted and the other end attached to a magnetic bead.

2.
Polymers (Basel) ; 13(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205822

RESUMEN

Semiflexible nunchucks are block copolymers consisting of two long blocks with high bending rigidity jointed by a short block of lower bending stiffness. Recently, the DNA nanotube nunchuck was introduced as a simple nanoinstrument that mechanically magnifies the bending angle of short double-stranded (ds) DNA and allows its measurement in a straightforward way [Fygenson et al., Nano Lett. 2020, 20, 2, 1388-1395]. It comprises two long DNA nanotubes linked by a dsDNA segment, which acts as a hinge. The semiflexible nunchuck geometry also appears in dsDNA with a hinge defect (e.g., a quenched denaturation bubble or a nick), and in end-linked stiff filaments. In this article, we theoretically investigate various aspects of the conformations and the tensile elasticity of semiflexible nunchucks. We analytically calculate the distribution of bending fluctuations of a wormlike chain (WLC) consisting of three blocks with different bending stiffness. For a system of two weakly bending WLCs end-jointed by a rigid kink, with one end grafted, we calculate the distribution of positional fluctuations of the free end. For a system of two weakly bending WLCs end-jointed by a hinge modeled as harmonic bending spring, with one end grafted, we calculate the positional fluctuations of the free end. We show that, under certain conditions, there is a pronounced bimodality in the transverse fluctuations of the free end. For a semiflexible nunchuck under tension, under certain conditions, there is bimodality in the extension as a function of the hinge position. We also show how steric repulsion affects the bending fluctuations of a rigid-rod nunchuck.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA