Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(27): e202404637, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644436

RESUMEN

Application of silicon-based anodes is significantly challenged by low initial Coulombic efficiency (ICE) and poor cyclability. Traditional pre-lithiation reagents often pose safety concerns due to their unstable chemical nature. Achieving a balance between water-stability and high ICE in prelithiated silicon is a critical issue. Here, we present a lithium-enriched silicon/graphite material with an ultra-high ICE of ≥110 % through a high-stable lithium pre-storage methodology. Lithium pre-storage prepared a nano-drilled graphite material with surficial lithium functional groups, which can form chemical bonds with adjacent silicon during high-temperature sintering. This results in an unexpected O-Li-Si interaction, leading to in situ pre-lithiation of silicon nanoparticles and providing high stability in air and water. Additionally, the lithium-enriched silicon/graphite materials impart a combination of high ICE, high specific capacity (620 mAh g-1), and long cycling stability (>400 cycles). This study opens up a promising avenue for highly air- and water-stable silicon anode prelithiation methods.

2.
Small ; 20(31): e2311703, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38459649

RESUMEN

High tap density electrodes play a vital role in developing rechargeable batteries with high volumetric capacities, however, developing advanced electrodes with satisfied capacity, excellent structural stability, and achieving the resulted batteries with a high initial Coulombic efficiency (ICE) and good rate capability with long lifespan simultaneously, are still an intractable challenge. Herein, an ultrahigh ICE of 94.1% and stable cycling of carbon-free iron selenides anode is enabled with a high tap density of 2.57 g cm-3 up to 4000 cycles at 5 A g-1 through strain-modulating by constructing a homologous heterostructure. Systematical characterization and theoretical calculation show that the self-adaptive homologous heterointerface alleviates the stress of the iron selenide anodes during cycling processes and subsequently improves the stability of the assembled batteries. Additionally, the well-formed homologous heterostructure also contributes to the rapid Na+ diffusion kinetic, increased charge transfer, and good reversibility of the transformation reactions, endowing the appealing rate capability of carbon-free iron selenides. The proposed design strategy provides new insight and inspiration to aid in the ongoing quest for advanced electrode materials with high tap densities and excellent stability.

3.
Adv Mater ; 36(15): e2307151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190759

RESUMEN

Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized Sn clusters and their host pores in carbon nanofiber) during sodiation and desodiation is revealed using a state-of-the-art 3D electron microscopic reconstruction technique. For the first time, the anomalous expansion of Sn clusters after desodiation is observed owing to the aggregation of clusters/single atoms. Pore connectivity is retained despite the anomalous expansion, suggesting inhibition of solid electrolyte interface formation in the sub-2-nm pores. Taking advantage of the built-in nanoconfinement feature, the CNF film with nanometer-sized interconnected pores hosting Sn clusters (≈2 nm) enables high utilization (95% at a high rate of 1 A g-1) of Sn active sites while maintaining an improved initial Coulombic efficiency of 87%. The findings provide insights into electrochemical reactions in a confined space and a guiding principle in electrode design for battery applications.

4.
ChemSusChem ; 17(2): e202301281, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735149

RESUMEN

Due to its high energy density and low cost, Li-rich Mn-based layered oxides are considered potential cathode materials for next generation Li-ion batteries. However, they still suffer from the serious obstacle of low initial Coulombic efficiency, which is detrimental to their practical application. Here, an efficient surface modification method via NH4 H2 PO4 assisted pyrolysis is performed to improve the Coulombic efficiency of Li1.2 Mn0.54 Ni0.13 Co0.13 O2 , where appropriate oxygen vacancies, Li3 PO4 and spinel phase are synchronously generated in the surface layer of LMR microspheres. Under the synergistic effect of the oxygen vacancies and spinel phase, the unavoidable oxygen release in the cycling process was effectively suppressed. Moreover, the induced Li3 PO4 nanolayer could boost the lithium-ion diffusion and mitigate the dissolution of transition metal ions, especially manganese ions, in the material. The optimally modified sample yielded an impressive initial Coulombic efficiency and outstanding rate performance.

5.
Adv Sci (Weinh) ; 10(9): e2206574, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683228

RESUMEN

Transition metal oxides with high capacity still confront the challenges of low initial coulombic efficiency (ICE, generally <70%) and inferior cyclic stability for practical lithium-storage. Herein, a hollow slender carambola-like Li0.43 FeO1.51 with Fe vacancies is proposed by a facile reaction of Fe3+ -containing metal-organic frameworks with Li2 CO3 . Synthesis experiments combined with synchrotron-radiation X-ray measurements identify that the hollow structure is caused by Li2 CO3 erosion, while the formation of Fe vacancies is resulted from insufficient lithiation process with reduced Li2 CO3 dosage. The optimized lithium iron oxides exhibit remarkably improved ICE (from 68.24% to 86.78%), high-rate performance (357 mAh g-1 at 5 A g-1 ), and superior cycling stability (884 mAh g-1 after 500 cycles at 0.5 A g-1 ). Paring with LiFePO4 cathodes, the full-cells achieve extraordinary cyclic stability with 99.3% retention after 100 cycles. The improved electrochemical performances can be attributed to the synergy of structural characteristics and Fe vacancy engineering. The unique hollow structure alleviates the volume expansion of Li0.43 FeO1.51 , while the in situ generated Fe vacancies are powerful for modulating electronic structure with boosted Li+ transport rate and catalyze more Li2 O decomposition to react with Fe in the first charge process, hence enhancing the ICE of lithium iron oxide anode materials.

6.
Small Methods ; 6(8): e2200404, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35730654

RESUMEN

Prussian blue analogues (PBAs) have attracted extensive attention as cathode materials in sodium-ion batteries (SIBs) due to their low cost, high theoretical capacity, and facile synthesis process. However, it is of great challenge to control the crystal vacancies and interstitial water formed during the aqueous co-precipitation method, which are also the key factors in determining the electrochemical performance. Herein, an antioxidant and chelating agent co-assisted non-aqueous ball-milling method to generate highly-crystallized Na2- x Fe[Fe(CN)6 ]y with hollow structure is proposed by suppressing the speed and space of crystal growth. The as-prepared Na2- x Fe[Fe(CN)6 ]y hollow nanospheres show low vacancies and interstitial water content, leading to a high sodium content. As a result, the Na-rich Na1.51 Fe[Fe(CN)6 ]0.87 ·1.83H2 O hollow nanospheres exhibit a high initial Coulombic efficiency, excellent cycling stability, and rate performance via a highly reversible two-phase transition reaction confirmed by in situ X-ray diffraction. It delivers a specific capacity of 124.2 mAh g-1 at 17 mA g-1 , presenting ultra-high rate capability (84.1 mAh g-1 at 3400 mA g-1 ) and cycling stability (65.3% capacity retention after 1000 cycles at 170 mA g-1 ). Furthermore, the as-reported non-aqueous ball-milling method could be regarded as a promising method for the scalable production of PBAs as cathode materials for high-performance SIBs.

7.
J Colloid Interface Sci ; 604: 168-177, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265677

RESUMEN

It is critical to develop carbon material anodes with high initial Coulombic efficiency and energy density for sodium ion batteries. Herein, a novel mushroom spore with chitin as carbon precursor is first reported for energy storage, and its special porous spherical structure, fine structure and oxygen functional groups can be accurately controlled by carbonization temperature. The hollow porous carbon spheres obtained from mushroom spore at 1400 °C have appropriate porous structure, d002 spacing (0.364 nm), 7.12% oxygen content and ultra-low specific surface area of 5.5 m2 g-1. It could obtain 81.2% initial Coulombic efficiency and has reversible discharge capacity of 411.1 mA h g-1, wherein about 75% (308 mA h g-1) of its total capacity is derived from low-potential plateau (below 0.1 V Na+/Na), and the capacity is 384.5 mA h g-1 after 50 cycles. Furthermore, Density functional theory calculation showed that the residual oxygen functional groups (CO) in carbon materials are beneficial to sodium into graphite-like layers, and graphite-like layers spacing is smaller than the reported unadulterated carbon with 0.37 nm. Therefore, the excellent electrochemical performance and low-cost of natural mushroom spore derived hollow porous carbon spheres provide advantages for sodium ion batteries in large-scale storage devices.


Asunto(s)
Carbono , Sodio , Electrodos , Iones , Porosidad
8.
ACS Nano ; 14(10): 14057-14069, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32926610

RESUMEN

A hard carbon material with free-standing porous structure and high contents of heteroatom functional groups is considered to be a potential anode for potassium-ion batteries (PIBs). Herein, a free-standing phosphorus/nitrogen cofunctionalized porous carbon monolith (denoted as PN-PCM) anode for PIBs is successfully fabricated via a supercritical CO2 foaming technology, followed by amidoximation, phosphorylation, and thermal treatment. Thanks to the synergistic effect of a three-dimensional macroporous open structure and high P/N contents of 6.19/5.74 at%, the PN-PCM anode delivers an excellent reversible specific capacity (396 mA h g-1 at 0.1 A g-1 after 300 cycles) with high initial Coulombic efficiency (63.6%), a great rate performance (168 mA h g-1 at 5 A g-1), and an ultralong cycling stability (218 mA h g-1 at 1 A g-1 after 3000 cycles). Theoretical calculations clarify that in a P/N cofunctionalized carbon, the P-C bonds devote more to enhancing the potassium storage via adsorption and improving electronic conductivity of carbon, while P-O bonds contribute more to enlarging the interlayer distance of carbon and reducing the ion diffusion barrier.

9.
ACS Appl Mater Interfaces ; 11(1): 714-721, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525409

RESUMEN

Nano-Si has been long-hampered in its use for practical lithium battery anodes due to its intrinsic high surface area. To improve the Coulombic efficiency and areal mass loading, we extend the starting materials from nano-Si to photovoltaic waste Si powders (∼1.5 µm). Unique morphology design and interfacial engineering are designed to overcome the particle fracture of micrometer Si. First, we develop a Cu-assisted chemical wet-etching method to prepare micrometer-size bulk-porous Si (MBPS), which provides interconnected porous space to accommodate volume expansion. In addition, a monolithic, multicore, interacting MBPS/carbonized polyacrylonitrile (c-PAN) electrode with strong interfacial Si-N-C is designed to improve the interparticle electrical conductivity during volume expansion and shrinkage. Furthermore, intermediate Si nanocrystals are well-maintained during the lithiation of MBPS, which facilitates the reversibility of lithiation-delithiation process. As a result, the MBPS/c-PAN electrodes exhibit a reversible specific capacity of 2126 mAh g-1 with a high initial Coulombic efficiency of 92%. Moreover, even after increasing the capacity loading to 3.4 mAh cm-2, the well-designed electrode shows a capacity retention of 94% in the first 50 cycles at a current density of 0.2 A g-1 with deep lithiation and delithiation processes between 0.005 and 2.5 V.

10.
ACS Nano ; 10(11): 10589-10597, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27934078

RESUMEN

Three-dimensional (3D) hyperporous silicon flakes (HPSFs) are prepared via the chemical reduction of natural clay minerals bearing metal oxides. Natural clays generally have 2D flake-like structures with broad size distributions in the lateral dimension and varied thicknesses depending on the first processing condition from nature. They have repeating layers of silicate and metal oxides in various ratios. When the clay mineral is subjected to a reduction reaction, metal oxide layers can perform a negative catalyst for absorbing large amounts of exothermic heat from the reduction reaction of the silicate layers with metal reductant. Selectively etching out metal oxides shows a hyperporous nanoflake structure containing 100 nm macropores and meso-/micropores on its framework. The resultant HPSFs are demonstrated as anode materials for lithium-ion batteries. Compared to conventional micro-Si anodes, HPSFs exhibit exceptionally high initial Coulombic efficiency over 92%. Furthermore, HPSF anodes show outstanding cycling performance (reversible capacity of 1619 mAh g-1 at a rate of 0.5 C after 200 cycles, 95.2% retention) and rate performance (∼580 mAh g-1 at a rate of 10 C) owing to their distinctive structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA