Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404185, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161076

RESUMEN

Narrow-bandgap (NBG) Pb-Sn perovskites are ideal candidates as rear subcell in all-perovskite tandem solar cells. Because Pb-Sn perovskites contain multiple components, the rational regulation of vertical structure and both interfaces of the film is primarily crucial to achieve high-performing NBG perovskite solar cells (PSCs). Herein, a molecule anchoring strategy is developed to in situ construct Cs0.1MA0.3FA0.6Pb0.5Sn0.5I3 perovskite film with vertically aligned crystals and optimized interfaces. Specifically, l-alanine methyl ester is developed as an anchoring additive to induce the vertical crystal growth, while PEA2PbI3SCN film is introduced to promote the homogeneous crystallization at the buried interface via SCN- anchoring with cations. Further ethylenediamine dihalides (EDA(I/Cl)2) post-treatment leads to the gradient energy level alignment on the film surface. Pb-Sn PSCs based on such film show efficient charge transport and extraction, producing a champion power conversion efficiency (PCE) of 22.3% with an impressive fill factor of 82.14%. Notably, combining with semitransparent 1.78 eV wide-bandgap PSCs, the four-terminal all-perovskite tandem device achieves a PCE of 27.1%. This work opens up a new pathway to boost the performance of Pb-Sn PSCs and their tandem devices.

2.
Micromachines (Basel) ; 15(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39064327

RESUMEN

Retroreflectors are an important optical component, but current retroreflector structures and manufacturing processes are relatively complex. This paper proposes a rapid, low-cost, large-area method for fabricating retroreflectors based on microlens arrays. Tunable microlens arrays with adjustable curvature, fill factor, and sizes were prepared using photolithography and thermal reflow techniques. Subsequently, a two-step nanoimprinting process was used to create a flexible reverse mold and transfer the structure onto the desired substrate. The microlens arrays, with a diameter of 30 µm, a period of 33 µm, a curvature radius ranging from 15.5 to 18.8 µm, and a fill factor ranging from 75.1% to 88.8%, were fabricated this way. In addition, the method also fabricated microlens arrays with diameters ranging from 10 to 80 µm. Retroreflectors were made by sputtering a layer of silver on the MLAs as a reflecting layer, and tests showed that the microlens-based retroreflector exhibited superior retroreflective performance with a wide-angle response of ±75°. Microlens-based retroreflectors have the advantages of simple operation and controllable profiles. The fabrication method in this paper is suitable for large-scale production, providing a new approach to retroreflector design.

3.
ACS Appl Mater Interfaces ; 14(3): 4344-4351, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029968

RESUMEN

The recent commercial success of flexible and foldable displays has resulted in growing interest in stretchable electronics which are considered to be the next generation of the optoelectronic technology. Stretchable display technologies are being intensively studied for versatile applications including wearable, attachable, and shape changeable electronics. In this paper, we present high fill factor, stretchable inorganic light-emitting diode (LED) displays fabricated by connecting mini-LEDs and stretchable interconnects in a double-layer modular design. The double-layer modular design enables an increased areal coverage of LEDs and stretchable interconnectors with both electrical and mechanical stability. The main features of the double-layer modular design, fabrication processes, and device characteristics for the high fill factor, stretchable inorganic LED display are discussed, with experimental and computational results. Demonstrations of a passive matrix LED display confirm the potential value of the multi-layer structured, stretchable electronics in a wide range of applications that need high fill factor with high stretchability.

4.
ACS Appl Mater Interfaces ; 13(30): 36295-36306, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34293853

RESUMEN

Cylindrical microlens arrays (CMLAs) play a key role in many optoelectronic devices, and 100% fill-factor CMLAs also have the advantage of improving the signal-to-noise ratio and avoiding stray-light effects. However, the existing preparation technologies are complicated and costly, which are not suitable for mass production. Herein, we propose a simple, efficient, and low-cost manufacturing method for CMLAs with a high fill-factor via the electric-field-driven (EFD) microscale 3D printing of polydimethylsiloxane (PDMS). By adjusting the printing parameters, the profile and the fill-factor of the CMLAs can be controlled to improve their optical performance. The optical performance test results show that the printed PDMS CMLAs have good image-projecting and light-diffraction properties. Using the two printing modes of this EFD microscale 3D-printing technology, a cylindrical dual-microlens array with a double-focusing function is simply prepared. At the same time, we print a series of specially shaped microlenses, proving the flexible manufacturing capabilities of this technology. The results show that the prepared CMLAs have good morphology and optical properties. The proposed method may provide a viable route for manufacturing large-area CMLAs with 100% fill-factor in a very simple, efficient, and low-cost manner.

5.
Adv Mater ; 32(11): e1907604, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32022965

RESUMEN

Morphology tuning of the blend film in organic solar cells (OSCs) is a key approach to improve device efficiencies. Among various strategies, solid additive is proposed as a simple and new way to enable morphology tuning. However, there exist few solid additives reported to meet such expectations. Herein, chlorine-functionalized graphdiyne (GCl) is successfully applied as a multifunctional solid additive to fine-tune the morphology and improve device efficiency as well as reproductivity for the first time. Compared with 15.6% efficiency for control devices, a record high efficiency of 17.3% with the certified one of 17.1% is obtained along with the simultaneous increase of short-circuit current (Jsc ) and fill factor (FF), displaying the state-of-the-art binary organic solar cells at present. The redshift of the film absorption, enhanced crystallinity, prominent phase separation, improved mobility, and decreased charge recombination synergistically account for the increase of Jsc and FF after introducing GCl into the blend film. Moreover, the addition of GCl dramatically reduces batch-to-batch variations benefiting mass production owing to the nonvolatile property of GCl. All these results confirm the efficacy of GCl to enhance device performance, demonstrating a promising application of GCl as a multifunctional solid additive in the field of OSCs.

6.
Adv Mater ; 30(26): e1800052, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29766573

RESUMEN

In this work, an effectual strategy of constructing polar small molecule acceptors (SMAs) to promote fill factor (FF) of nonfullerene polymer solar cells (PSCs) is first reported. Three asymmetrical SMAs of IDT6CN, IDT6CN-Th, and IDT6CN-M, which own large dipole moments, are designed and synthesized. The PSCs based on three polar SMAs exhibit apparently higher FFs compared with their symmetrical analogues. The asymmetrical design strategy accompanied with side chain and end group engineering makes IDT6CN-Th- and IDT6CN-M-based nonfullerene PSCs achieve high power conversion efficiency with FFs approaching 77%.

7.
Adv Mater ; 29(47)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29131429

RESUMEN

Employing a layer of bulk-heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite-based solar cells, instead of using tandem devices or near infrared (NIR)-absorbing Sn-containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short-circuit current (JSC ) and fill factor (FF). To find an appropriate NIR-absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase JSC , but also possess suitable energy levels and high mobility to afford high VOC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well-matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high Voc , JSC , and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA