Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414234, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225452

RESUMEN

Manipulating the atomic structure of the catalyst and tailoring the dissociative water-hydrogen bonding network at the catalyst-electrolyte interface is essential for propelling alkaline hydrogen evolution reactions (HER) and hydrazine oxidation reaction (HzOR), but remains a great challenge. Herein, we constructed an advanced a-RuMo/NiMoO4/NF heterogeneous electrocatalysts with amorphous RuMo alloy nanoclusters anchored to amorphous NiMoO4 skeletons on Ni foam by a heteroatom implantation strategy. Theoretical calculations and in-situ Raman tests show that the amorphous and alloying structure of a-RuMo/NiMoO4/NF not only induces the directional evolution of interfacial H2O, but also lowers the d-band center (from -0.43 to -2.22 eV) of a-RuMo/NiMoO4/NF, the Gibbs free energy of hydrogen adsorption (ΔGH*, from -1.29 to -0.06 eV), and the energy barrier of HzOR (ΔGN2(g) = 1.50 eV to ΔGN2* = 0.47 eV). Profiting from these favorable factors, the a-RuMo/NiMoO4/NF exhibits excellent electrocatalytic performances, especially at large current densities, with an overpotential of 13 and 129 mV to reach 10 and 1000 mA cm-2 for HER. While for HzOR, it needs only -91 and 276 mV to deliver 10 and 500 mA cm-2, respectively. Further, the constructed a-RuMo/NiMoO4/NF||a-RuMo/NiMoO4/NF electrolyzer demands only 7 and 420 mV to afford 10 and 500 mA cm-2.

2.
Angew Chem Int Ed Engl ; : e202411603, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231800

RESUMEN

Non-iridium acid-stabilized electrocatalysts for oxygen evolution reaction (OER) are crucial to reducing the cost of proton exchange membrane water electrolyzers (PEMWEs). Here, we report a strategy to modulate the stability of RuO2 by doping boron (B) atoms, leading to the preparation of a RuO2 catalyst with long-range disorder (LD-B/RuO2). The structure of long-range disorder endowed LD-B/RuO2 with a low overpotential of 175 mV and an ultra-long stability, which can maintain OER for about 1.6 months at 10 mA cm-2 current density in 0.5 M H2SO4 with almost invariable performance. More importantly, a PEM electrolyzer using LD-B/RuO2 as the anode demonstrated excellent performance, reaching 1000 mA cm-2 at 1.63 V with durability exceeding 300 h at 250 mA cm-2 current density. The introduction of B atoms induced the formation of a long-range disordered structure and symmetry-breaking B-Ru-O motifs, which enabled the catalyst structure to a certain toughness while simultaneously inducing the redistribution of electrons on the active center Ru, which jointly promoted and guaranteed the activity and long-term stability of LD-B/RuO2. This study provides a strategy to prepare long-range disordered RuO2 acidic OER catalysts with high stability using B-doping to perturb crystallinity, which opens potential possibilities for non-iridium-based PEMWE applications.

3.
Adv Sci (Weinh) ; : e2408544, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229933

RESUMEN

Binder plays a crucial role in constructing high-performance electrodes for water electrolysis. While most research has been focused on advancing electrocatalysts, the application of binders in electrode design has yet to be fully explored. Herein, the in situ incorporation of polytetrafluoroethylene (PTFE) as a multifunctional binder, which increases electrochemical active sites, enhances mass transfer, and strengthens the mechanical and chemical robustness of oxygen evolution reaction (OER) electrodes, is reported. The NiFe-LDH@PTFE/NF electrode prepared by co-deposition of PTFE with NiFe-layered double hydroxide onto nickel foam demonstrates exceptional long-term stability with a minimal potential decay rate of 0.034 mV h-1 at 500 mA cm-2 for 1000 h. The alkaline water electrolyzer utilizing NiFe-LDH@PTFE/NF requires only 1.584 V at 500 mA cm-2 and sustains high energy efficiency over 1000 h under industrial operating conditions. This work opens a new path for stabilizing active sites to obtain durable electrodes for OER as well as other electrocatalytic systems.

4.
Angew Chem Int Ed Engl ; : e202414493, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245630

RESUMEN

The adhesion of H2 bubbles on the electrode surface is one of the main factors limiting the performance of H2 evolution of electrolytic water, especially at high current density. To overcome this problem, here a "quasi-gas phase" electrolytic water reaction system based on capillary effect is proposed for the first time to improve the mass transfer efficiency of H2. The typical feature of this reaction system is that the main site of H2 evolution reaction is transferred from the bulk aqueous solution to the gas phase environment above the bulk aqueous solution, thus effectively inhibiting the aggregation of H2 bubbles and reducing the resistance of their diffusion away. Electrochemical test results show that the proposed quasi-gas phase system can significantly reduce the potential required in H2 evolution reaction process at high current density compared with the conventional electrolytic reaction system. Specifically, the overpotential potential is reduced by 0.31 V when the H2 evolution current density of 250 mA cm-2 is achieved.

5.
Angew Chem Int Ed Engl ; : e202415975, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264141

RESUMEN

Electrocatalytic nitrate reduction to ammonia (NO3RR) is very attractive for nitrate removal and ammonia production in industrial processes. However, the nitrate reduction reaction is characterized by intense hydrogen competition at strong reduction potentials, which greatly limits the Faraday efficiency at strong reduction potentials. Herein, we reported an AuxCu single-atom alloy aerogels (AuxCu SAAs) with three-dimensional network structure with significant nitrate reduction performance of Faraday efficiency (FE) higher than 90% over a wide potential range (0 ~ -1 VRHE). The FE of the catalyst was close to 100% at a high reduction potential of -0.8 VRHE, accompanying with NH3 yield reaching 6.21 mmol h-1 cm-2. More importantly, the catalyst maintained a long-term operation over 400 h at 400 mA cm-2 for the NO3RR using a continuous flow system in a H-cell. Experimental and theoretical analysis demonstrate that the catalyst can lower the energy barrier for the hydrogenation reaction of *NO2, leading to a rapid consumption of the generated *H, facilitate the hydrogenation process of NO3RR, and inhibit the competitive HER at high overpotentials, which efficiently promotes the nitrate reduction reaction, especially in industrial applications.

6.
Adv Mater ; : e2409292, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221668

RESUMEN

Gas-evolving reactions (GERs) are important in many electrochemical energy conversion technologies and chemical industries. The operation of GERs at high current densities is critical for their industrial implementation but remains challenging as it poses stringent requirements on the electrodes in terms of reaction kinetics, mass transfer, and electron transport. Here the general and rational design of self-standing carbon electrodes with vertically aligned porous channels, appropriate pore size distribution, and high surface area as supports for loading a variety of catalytic species by facile electrodeposition are reported. These electrodes simultaneously possess high intrinsic activity, large numbers of active sites, and efficient transport highways for ions, gases, and electrons, resulting in significant performance improvements at high current densities in diverse GERs such as urea oxidation, hydrogen evolution, and oxygen evolution reactions, as well as overall urea/water electrolyzers. As an example, the carbon electrode decorated with Ni(OH)2 demonstrates a record-high current density of 1000 mA cm-2 at 1.360 V versus the reversible hydrogen electrode, largely outperforming the conventional nickel foam-based counterpart and the state-of-the-art electrodes.

7.
Adv Mater ; : e2314193, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177182

RESUMEN

Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.

8.
Small ; : e2404059, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162125

RESUMEN

Sodium-ion batteries (SIBs) are a promising substitute for lithium batteries due to their abundant resources and low cost. Metal sulfides are regarded as highly attractive anode materials due to their superior mechanical stability and high theoretical specific capacity. Guided by the density functional theory (DFT) calculations, 3D porous network shaped Sb2S3/FeS2 composite materials with reduced graphene oxide (rGO) through a simple solvothermal and calcination method, which is predicted to facilitate favorable Na+ ion diffusion, is synthesized. Benefiting from the well-designed structure, the resulting Sb2S3/FeS2 exhibit a remarkable reversible capacity of 536 mAh g-1 after 2000 cycles at a current density of 5 A g-1 and long high-rate cycle life of 3000 cycles at a current density of 30 A g-1 as SIBs anode. In situ and ex situ analyses are carried out to gain further insights into the storage mechanisms and processes of sodium ions in Sb2S3/FeS2@rGO composites. The significantly enhanced sodium storage capacity is attributed to the unique structure and the heterogeneous interface between Sb2S3 and FeS2. This study illustrates that combining rGO with heterogeneous engineering can provide an ideal strategy for the synthesis of new hetero-structured anode materials with outstanding battery performance for SIBs.

9.
Nano Lett ; 24(36): 11286-11294, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213593

RESUMEN

Herein, we propose a platinization strategy for the preparation of Pt/X catalysts with low Pt content on substrates possessing electron-rich sites (Pt/X: X = Co3O4, NiO, CeO2, Covalent Organic Framework (COF), etc.). In examples with inorganic and organic substrates, respectively, Pt/Co3O4 possesses remarkable catalytic ability toward HER, achieving a current density at an overpotential of 500 mV that is 3.22 times higher than that of commercial Pt/C. It was also confirmed by using operando Raman spectroscopy that the enhancement of catalytic activity was achieved after platinization of the COF, with a reduction of overpotential from 231 to 23 mV at 10 mA cm-2. Density functional theory (DFT) reveals that the improved catalytic activity of Pt/Co3O4 and Pt/COF originated from the re-modulation of Ptδ+ on the electronic structure and the synergistic effect of the interfacial Ptδ+/electron-rich sites. This work provides a rapid synthesis strategy for the synthesis of low-content Pt catalysts for electrocatalytic hydrogen production.

10.
J Colloid Interface Sci ; 676: 471-484, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047375

RESUMEN

Structural engineering, including electronic and geometric modulations, is a good approach to improve the activity of electrocatalysts. Herein, we employed FeOOH and the second metal center Ni to modulate the electronic structure of CoMoO4 and used a low temperature solvothermal route and a chemical etching method to prepare the special hollow hierarchical structure. Based on the prediction of multi-method calculations by density functional theory (DFT) and ab initial molecular dynamics (AIMD), a series of materials were fabricated. Among them, the optimal hollow FeOOH/(Ni1Co1)MoO4 by coating (NiCo)MoO4 nanosheets on FeOOH nanotubes showed excellent performances toward high current density oxygen evolution reaction (OER) in alkaline and simulated seawater solutions, hybrid supercapacitor (HSC), and aqueous battery due to the well-controlled electronic and geometric structures. The optimal FeOOH/(Ni1Co1)MoO4 required overpotentials of 225 and 546 mV to deliver 10 and 1000 mA cm-2 current densities toward alkaline OER, and maintained a good stability for 100 h at 200 mA cm-2 with negligible attenuation. The FeOOH/(Ni1Co1)MoO4//Pt/C electrolyzer exhibited a low cell voltage of 1.52 and 1.79 V to drive 10 and 200 mA cm-2 and retained a long-term durability nearly 100 h at 1.79 V. As the electrode of energy storage devices, it possessed a specific capacity of 342 mA h g-1 at 1 A g-1. HSC and SC-type battery devices were fabricated. The assembled HSC kept a capacitance retention of 94 % after 10,000 cycles. This work provided a way to fabricate effective and stable multifunctional materials for energy storage and conversion with the aid of multi-method calculations.

11.
Nanomaterials (Basel) ; 14(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39057849

RESUMEN

Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen production is scaled up to industrial levels, operating at high current densities introduces unique challenges. It is necessary to design advanced electrocatalysts for hydrogen evolution reactions (HERs) under high current densities. This review will briefly introduce the challenges posed by high current densities on electrocatalysts, including catalytic activity, mass diffusion, and catalyst stability. In an attempt to address these issues, various electrocatalyst design strategies are summarized in detail. In the end, our insights into future challenges for efficient large-scale industrial hydrogen production from water splitting are presented. This review is expected to guide the rational design of efficient high-current density water electrolysis electrocatalysts and promote the research progress of sustainable energy.

12.
Small ; : e2403399, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045897

RESUMEN

Ammonia (NH3) synthesis via the nitrate reduction reaction (NO3RR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NO3RR performance under high current density. Herein, it is shown that boron-doped Ti3C2Tx MXene nanosheets can highly efficiently catalyze the conversion of NO3RR-to-NH3 at ambient conditions, showing a maximal NH3 Faradic efficiency of 91% with a peak yield rate of 26.2 mgh-1 mgcat. -1, and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine Ti3C2Tx MXene. More importantly, when tested in a flow cell, the designed catalyst delivers a current density of ‒1000 mA cm-2 at a low potential of ‒1.18 V versus the reversible hydrogen electrode and maintains a high NH3 selectivity over a wide current density range. Besides, a Zn-nitrate battery with the catalyst as the cathode is assembled, which achieves a power density of 5.24 mW cm-2 and a yield rate of 1.15 mgh-1 mgcat. -1. Theoretical simulations further demonstrate that the boron dopants can optimize the adsorption and activation of NO3RR intermediates, and reduce the potential-determining step barrier, thus leading to an enhanced NH3 selectivity.

13.
ACS Appl Mater Interfaces ; 16(30): 40086-40099, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39020506

RESUMEN

In recent years, ceramic cells based on high proton conductivity have attracted much attention and can be employed for hydrogen production and electricity generation, especially at low temperatures. Nevertheless, attaining a high power output and durability is challenging, especially at low operational temperatures. In this regard, we design semiconductor heterostructure SFT-ZnO (SrFe0.3TiO3-ZnO) materials to function as an electrolyte for fuel cell and electrolysis applications. Using this approach, the functional semiconductor heterostructure can deliver a better power output and high ionic and proton conductivity at low operational temperatures. The prepared cell in fuel cell mode has demonstrated excellent performance of 700 mW cm-2 and proton performance of 540 mW cm-2 at the low temperature of 520 °C, suggesting dominant proton conduction. Further, the prepared cell delivers exceptional current densities of 1.18 and 0.38 A cm-2 (at 1.6 and 1.3 V, respectively) at 520 °C in the electrolysis mode. Our electrochemical cell is stable in fuel and electrolysis mode at a low temperature of 500 °C.

14.
J Colloid Interface Sci ; 672: 736-743, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870764

RESUMEN

The efficacy of any electrochemical reaction hinges on the extent of interaction achievable between reactive intermediates and the electrocatalytic active site. Any weak adsorption of these intermediates on the metal's active site results in low oxygen evolution reaction (OER) rates, mainly when catalysed by the Ni-based layered double hydroxide. To tackle this challenge, a heterojunction consisting of nickel-iron layered double hydroxide (NiFe-LDH) and cerium trifluoride (CeF3) is synthesized. Both phases were developed in-situ to have an abundance of heterointerfaces. The charge transfer amid the NiFe-LDH and CeF3 phases is brought about via these heterointerfaces. As a result, the overall charge dynamics associated with nickel (Ni) and iron (Fe) atoms are somewhat increased, and an enhanced positive charge on the metal site makes it more active in grabbing the reactive species, thereby making the entire OER process faster. The CeF3-NiFeLDH catalyst reaches a current density of 1000 mA cm-2 at an overpotential of 340 mV. Such a high current density is highly significant for the industrial-scale production of the products. The catalyst demonstrated impressive durability, maintaining stable performance for 90 h while operating at 500 mA cm-2. The charge dynamics between both phases were thoroughly examined using X-ray photoelectron spectroscopy (XPS).

15.
Adv Sci (Weinh) ; 11(32): e2404323, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924333

RESUMEN

Addition of organic compounds containing O/N heteroatoms to aqueous electrolytes such as ZnSO4 (ZS) solutions is one of the effective strategies to inhibit Zn anode dendrites and side reactions. However, addressing the stability of Zn plating/stripping at high current densities and areal capacities by this method is still a challenge, especially in capacitors known for high power and long life. Herein, an organic heterocyclic compound of 1, 4, 7, 10-tetraazacyclododecane (TC) containing four symmetrically distributed N atoms is employed as ZS additive, expanding the life of Zn anodes from ≈ 30 h to 1000 and 240 h at deep plating/stripping conditions of 10 and 20 mA cm-2/mAh cm-2, respectively; the cumulative capacity is as high as 5.0 Ah cm-2 with 99% Coulombic efficiency, far exceeding reported additives. TC with higher binding energies than H2O for Zn species tends to adsorb to Zn (002) in a lying manner and participate in the solvation shell of Zn2+, thus avoiding Zn dendrites and side-reaction damage, especially at high current densities. The TC-endowed Zn anode's stability under such extreme conditions is verified in Zn-ion capacitors (i.e., > 94.6% capacity retention after 28 000 cycles), providing new insights into the development of high-power Zn-based energy storage devices.

16.
Angew Chem Int Ed Engl ; : e202410802, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923695

RESUMEN

Electrolyte cations have been demonstrated to effectively enhance the rate and selectivity of the electrochemical CO2 reduction reaction (CO2RR), yet their implementation in electrolyte-free membrane electrode assembly (MEA) electrolyzer presents significant challenges. Herein, an anchored cation strategy that immobilizes Cs+ on carbon vacancies was designed and innovatively implemented in MEA electrolyzer, enabling highly efficient CO2 electroreduction over commercial silver catalyst. Our approach achieves a CO partial current density of approximately 500 mA cm-2 in the MEA electrolyzer, three-fold enhancement compared to pure Ag. In situ Raman and theoretical analyses, combined with machine learning potentials, reveal anchored Cs induces an electric field that significantly promotes the adsorption of *CO2 - intermediates through performing muti-point energy calculations on each structure. Furthermore, reduced adsorption of *OH intermediates effectively hampers competing hydrogen evolution reaction, as clarified by disk electrode experiments and density functional theory studies. Additionally, coupling our system with commercial polysilicon solar cells yields a notable solar-to-CO energy conversion efficiency of 8.3 %. This study opens a new avenue for developing effective cation-promoting strategy in MEA reactors for efficient CO2RR.

17.
Chimia (Aarau) ; 78(5): 344-348, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38822779

RESUMEN

Presented here is an electrochemical three-electrode Gas Diffusion Electrode (GDE) cell tailored for operandoand in situ investigations of electrocatalytic processes, with a particular focus on X-ray scattering studies. The optimized cell is engineered to accommodate the minimal sample-detector distances requisite for comprehensive X-ray total scattering investigations. An in-depth understanding of catalytic processes requires their study under 'working' conditions. Configured as a flow-cell, the setup therefore enables the examination of electrocatalysts under high current densities and associated gas evolution phenomena, particularly pertinent for reactions like the oxygen evolution reaction (OER). Notably, its transparency simplifies cell alignment, troubleshooting, and facilitates scans through the catalyst layer, crucial for background corrections. Demonstrating its versatility, we showcase its utility through Small Angle X-ray Scattering (SAXS), X-ray Diffraction (XRD), and X-ray Pair Distribution Function (PDF) analyses of total scattering data.

18.
J Colloid Interface Sci ; 673: 153-162, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38875786

RESUMEN

Organic acid treatment can facilitate the in-situ formation of a solid electrolyte interface (SEI) on Zn foil protecting the anode from corrosion. However, the generation of hydrogen (H2) during this process is inevitable, which is often considered detrimental to getting compact SEI. Herein, a H2 film-assisted method is proposed under concentrated Amino-Trimethylene-Phosphonic-Acid to construct ultrathin and dense SEI within 1 min. Specifically, the (002) crystal planes survive from the etching process of 1 min due to the adhered H2, inducing uniform deposition and enhanced corrosion-resistance. Moreover, the H2 can effectively regulate the reaction rate, leading to ultrathin SEI and initiating a morphology preservation behavior, which has been neglected by the previous reports. The quick-formed SEI has excellent compatibility, low resistance and effective isolation of electrolyte/anode, whose advantages work together with exposed (002) planes to get accustomed to high-current surge, leading to the ZAC1@Zn//ZAC1@Zn consistently cycling over 800 h at 15 mA cm-2 and 15 mAh cm-2, the ZAC1@Zn//Cu preserves high reversibility (CE 99.7 %), and the ZAC1@Zn//MVO exhibits notable capacity retention at 191.7 mAh/g after 1000 cycles.

19.
Small ; : e2402758, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860555

RESUMEN

A heterojunction photo-electrode(s) consisting of porous black titanium oxide (bTiO2) and electrochemically self-activated TaS2 flakes is proposed and utilized for hydrogen evolution reaction (HER). The self-activated TaS2 flakes provide abundant catalytic sites for HER and the porous bTiO2, prepared by electrochemical anodization and subsequent reduction serves as an efficient light absorber, providing electrons for HER. Additionally, Au nanostructures are introduced between bTiO2 and TaS2 to facilitate the charge transfer and plasmon-triggering ability of the structure created. After structure optimization, high HER catalytic activity at acidic pH and excellent HER activity at neutral pH are achieved at high current densities. In particular, with the utilization of bTiO2@TaS2 photoelectrode (neutral electrolyte, sunlight illumination) current densities of 250 and 500 mA cm-2 are achieved at overpotentials of 433, and 689 mV, respectively, both exceeding the "benchmark" Pt. The addition of gold nanostructures further reduces the overpotential to 360 and 543 mV at 250 and 500 mA cm-2, respectively. The stability of the prepared electrodes is investigated and found to be satisfying within 24 h of performance at high current densities. The proposed system offers an excellent potential alternative to Pt for the development of green hydrogen production on an industrial scale.

20.
Adv Mater ; 36(33): e2402156, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38869191

RESUMEN

Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA