Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39276071

RESUMEN

A three-dimensional (3D) hierarchical microfiber bundle-based scaffold integrated with silver nanowires (AgNWs) and porous polyurethane (PU) was designed for the Joule heater via a facile dip-coating method. The interconnected micrometer-sized voids and unique hierarchical structure benefit uniform AgNWs anchored and the formation of a high-efficiency 3D conductive network. As expected, this composite exhibits a superior electrical conductivity of 1586.4 S/m and the best electrothermal conversion performance of 118.6 °C at 2.0 V compared to reported wearable Joule heaters to date. Moreover, the durable microfiber bundle-PU network provides strong mechanical properties, allowing for the stable and durable electrothermal performance of such a composite to resist twisting, bending, abrasion, and washing. Application studies show that this kind of Joule heater is suitable for a wide range of applications, such as seat heating, a heating jacket, personal thermal management, etc.

2.
Int J Biol Macromol ; 278(Pt 3): 134455, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168201

RESUMEN

Solar-powered interfacial evaporation is a developing and sustainable technique increasingly utilized in desalination and wastewater purification. This technology involves the creation of cellulose nanofiber (CNF)/polylactic acid (PLA) composite aerogels through the Pickering emulsion approach. Self-floating aero-hydrogel (E-VGP) with a hierarchical porous structure was formed on a viscous mixture containing polyvinyl alcohol (PVA), peach gum polysaccharide (PGP), and polypyrrole (PPy) via an in-situ polymerization process. Furthermore, by modifying the hydrolysis time of PGP with a hyperbranched polyhydroxy structure, VGP hybrid hydrogels of varying microscopic molecular sizes were produced. Additionally, solar vapor generators (SVG) with diverse macroscopic structures were fabricated using molds. The V8G4-12hP0.2 hybrid hydrogel, synthesized using PGP hydrolyzed for 12 h, exhibited an evaporation enthalpy of water at 1204 J g-1. This capacity effectively activates water and enables low enthalpy evaporation. Conversely, the macrostructural design allows the cylindrical rod raised sundial-shaped structure of SVG3 to possess an expanded evaporation area, minimize energy loss, and even harness additional energy from its nonradiative side. Consequently, this micro-macrostructural design enables SVG3 to attain an exceptionally high evaporation rate of 3.13 kg m-2 h-1 under 1 Sun exposure. Moreover, SVG3 demonstrates robust water purification abilities, suggesting significant potential for application in both desalination and industrial wastewater treatment.


Asunto(s)
Hidrogeles , Gomas de Plantas , Polisacáridos , Agua , Hidrogeles/química , Porosidad , Gomas de Plantas/química , Polisacáridos/química , Agua/química , Prunus persica/química , Luz Solar , Purificación del Agua/métodos , Polímeros/química , Hidrólisis
3.
Small Methods ; : e2400729, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097950

RESUMEN

Nanoporous metals, fabricated via dealloying, offer versatile applications but are typically limited to unimodal porous structures, which hinders the integration of conflicting pore-size-dependent properties. A strategy is presented that exploits the homologous temperature (TH)-dependent scaling of feature sizes to generate hierarchical porous structures through multistep dealloying at varied TH levels, adjusted by altering dealloying temperatures or the material melting points. This technique facilitates the creation of monolithic architectures of bimodal porous nickel and trimodal porous carbon, each characterized by well-defined, self-similar bicontinuous porosities across distinct length scales. These materials merge extensive surface area with efficient mass transport, showing improved current delivery and rate capabilities as electrodes in electrocatalytic hydrogen production and electrochemical supercapacitors. These results highlight TH as a unifying parameter for precisely tailoring feature sizes of dealloyed nanoporous materials, opening avenues for developing materials with hierarchical structures that enable novel functionalities.

4.
Adv Colloid Interface Sci ; 331: 103249, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032342

RESUMEN

Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.

5.
J Environ Manage ; 367: 121974, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079498

RESUMEN

Multiple porous carbon materials have great promise and potential in the capacitive deionization (CDI) field. Specific surface area (SSA), pore size distribution, and preparation method of CDI electrode materials are essential for the treatment of heavy metal ions. In this work, PPy composited porous carbon electrodes (hypercrosslinked polymers/polypyrrole, HCPs/PPy) were obtained by one-step crosslinked carbonization preparation and electro-deposition. The diverse pore structure gives the composite electrode a large SSA and excellent adsorption performance. HCPs/PPy-4 gives a high SSA of 251.26 m2/g. In the CDI process, the adsorption capacity of HCPs/PPy-4 for Fe3+, Cu2+, Pb2+, and Ag+ is 20.69 mg/g, 37.81 mg/g, 26.86 mg/g, and 40.95 mg/g. The negative electrode recoveries for the adsorption of the four ions were reached 81.2%, 89.2%, 85.5%, and 100%, respectively. It indicates that HCPs/PPy is a novel and potentially porous carbon electrode for high-performance CDI.


Asunto(s)
Electrodos , Metales Pesados , Metales Pesados/química , Adsorción , Porosidad , Iones , Carbono/química , Polímeros/química , Pirroles
6.
Small ; : e2402725, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837316

RESUMEN

Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.

7.
ACS Appl Mater Interfaces ; 16(20): 26547-26556, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727094

RESUMEN

Commercial nickel foam (NF), which is composed of numerous interconnected ligaments and hundred-micron pores, is widely acknowledged as a current collector/electrode material for catalysis, sensing, and energy storage applications. However, the commonly used NF often does not work satisfactorily due to its smooth surface and hollow structure of the ligaments. Herein, a gas-phase-induced engineering, two-step gaseous oxidation-reduction (GOR) is presented to directly transform the thin-walled hollow ligament of NF into a three-dimensional (3D) nanoporous prism structure, resulting in the fabrication of a unique hierarchical porous nickel foam (HPNF). This 3D nanoporous architecture is achieved by utilizing the spontaneous reconstruction of nickel atoms during volume expansion and contraction in the GOR process. The process avoids the involution of acid-base corrosion and sacrificial components, which are facile, environmentally friendly, and suitable for large-scale fabrication. Furthermore, MnO2 is electrochemically deposited on the HPNF to form a supercapacitor electrode (HPNF/MnO2). Because of the fully open structure for ion transport, superhydrophilic properties, and the increased contact area between MnO2 and the current collector, the HPNF/MnO2 electrode exhibits a high specific capacitance of 997.5 F g-1 at 3 A g-1 and remarkable cycling stability with 99.6% capacitance retention after 20000 cycles in 0.1 M Na2SO4 electrolyte, outperforming most MnO2-based supercapacitor electrodes.

8.
ACS Nano ; 18(20): 12820-12829, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38722145

RESUMEN

Developing highly efficient catalysts, characterized by controllable pore architecture and effective utilization of active sites, is paramount in addressing the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs), which, however, remains a formidable challenge. In this study, a hierarchical porous catalytic metal-organic framework (HPC-MOF) with both appropriate porosity and abundant exposed catalytic sites is achieved through time-controlled precise pore engineering. It is revealed that the evolution of the porous structure and catalytic site density is time-dependent during the etching processes. The moderately etched HPC-MOF-M attains heterogeneous pores at various scales, where large apertures ensure fast mass transfer and micropores inherit high-density catalytic sites, enhancing utilization and catalytic kinetics at internal catalytic sites. Capitalizing on these advantages, LSB incorporating the HPC-MOF-M interlayer demonstrates a 164.6% improvement in discharge capability and an 83.3% lower decay rate over long-term cycling at 1.0C. Even under high sulfur loading of 7.1 mg cm-2 and lean electrolyte conditions, the LSB exhibits stable cycling for over 100 cycles. This work highlights the significance of balancing the relationship between mass transfer and catalytic sites through precise chemical regulation of the porous structure in catalytic MOFs, which are anticipated to inspire the development of advanced catalysts for LSBs.

9.
Small ; 20(34): e2400796, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607275

RESUMEN

Solar-driven interfacial evaporation (SDIE) is a highly promising approach to achieve sustainable desalination and tackle the global freshwater crisis. Despite advancements in this field, achieving balanced thermal localization and salt resistance remains a challenge. Herein, the study presents a 3D hierarchical porous ceramic platform for SDIE applications. The utilized alumina foam ceramics (AFCs) exhibit remarkable corrosion resistance and chemical stability, ensuring a prolonged operational lifespan in seawater or brines. The millimeter-scale air-filled pores in AFCs prevent thermal losses through conduction with bulk water, resulting in heat-localized interfaces. The hydrophilic nature of macroporous AFC skeletons facilitates rapid water replenishment on the evaporating surface for effective salt-resistant desalination. Benefiting from its self-radiation adsorption and side-assisted evaporation capabilities, the AFC-based evaporators exhibit high indoor evaporation rates of 2.99 and 3.54 kg m-2 h-1 under one-sided and three-sided illumination under 1.0 sun, respectively. The AFC-based evaporator maintains a high evaporation rate of ≈2.77 kg m-2 h-1 throughout the 21-day long-term test. Furthermore, it achieves a daily water productivity of ≈10.44 kg m-2 in outdoor operations. This work demonstrates the potential of 3D hierarchical porous ceramics in addressing the trade-off between heat localization and salt resistance, and contributes to the development of durable solar steam generators.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38682823

RESUMEN

In the selective oxidation of H2S, the catalytic activity over N-doped carbon-based catalysts is significantly influenced by the accessibility of active sites and the mass transfer rates of reactant molecules (e.g., H2S and O2) as well as generated sulfur monomers. Therefore, it is crucial for enhancing the initial performance via the controlled synthesis of carbon-based catalysts with highly exposed active sites and unique porous structures. Herein, we reported on an efficient strategy to synthesize nanosized N-doped carbon particles with hierarchical porous structures by directly pyrolyzing an oversaturated NaCl-encapsulated ZIF-8 precursor mixture. The introduction of NaCl not only serves as a pollution-free template to promote the formation of graphitic carbon layers but also acts as an intercalating agent to guide the derivation of hierarchical porous structures, as well as enhances the amount of active nitrogen species in the catalysts. As a result, the as-prepared H-NC800 catalyst shows excellent H2S selective oxidation performance (sulfur formation rate is 794 gsulfur·kgcat-1·h-1), good stability (>80 h), and antiwater vapor properties. The characterization results and DFT calculations indicate the crucial role of pyridinic N in the adsorbing and activating reactant molecules (H2S, O2). Furthermore, nanoscale N-doped carbon particles accelerated the rapid transport of generated sulfur monomers under a hierarchical porous structure. This investigation introduces a distinctive strategy for synthesizing ZIF-8-derived N-doped carbon nanosized with a hierarchical porous structure, while its efficient and stable H2S selective oxidation performance highlights significant potential for practical implementation in the industrial desulfurization process.

11.
Molecules ; 29(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474493

RESUMEN

Trace ethylene poses a significant challenge during the storage and transportation of agricultural products, causing over-ripening, reducing shelf life, and leading to food waste. Zeolite-supported silver adsorbents show promise for efficiently removing trace ethylene. Herein, hierarchical Ag/NZ5(X) adsorbents were prepared via different ammonia modifications, which featured enhanced ethylene adsorption ability. Ag/NZ5(2.5) exhibited the largest capacity and achieved near-complete removal at room temperature with prolonged efficacy. Characterization results indicated that the ammonia modification led to the formation of a hierarchical structure in the zeolite framework, reducing diffusion resistance and increasing the accessibility of the active sites. Additionally, desilication effects increased the defectiveness, generating a stronger metal-support interaction and resulting in a higher metal dispersion rate. These findings provide valuable insights into the development of efficient adsorbents for removing trace ethylene, thereby reducing food waste and extending the shelf life of agricultural products.

12.
ACS Appl Mater Interfaces ; 16(11): 14124-14132, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38450639

RESUMEN

Here, stretchable hierarchical porous polyurethane fibers were designed, fabricated, and employed as a three-dimensional hierarchical interconnected framework for conductive networks interwoven with silver nanoparticles and carbon nanotubes. The fiber possessed favorable thermal insulation, strain sensing, and electric heating properties. The core-shell layered porous structure of fiber made the fiber have high heat insulation performance (the difference value of temperature |ΔT| = 3.54, 8.9, and 12.7 °C at heating stage temperatures of 35, 50, and 65 °C) and ultrahigh elongation at break (813%). Importantly, after conductive filler decoration, the fiber could exhibit real-time strain-sensing capacities with a high gauge factor. In addition, the fibers could be heated at low voltage, like an electrical heater. The development of flexible, stretchable, and multifunctional porous fibers had great potential applications in intelligent wearable devices for integrated thermal management, strain sensing, and intrinsic self-warming capability.

13.
ACS Appl Mater Interfaces ; 16(10): 12924-12938, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426939

RESUMEN

The commercialization of alloy-type anodes has been hindered by rapid capacity degradation due to volume fluctuations. To address this issue, stress-relief engineering is proposed for Si anodes that combines hierarchical nanoporous structures and modified layers, inspired by the phenomenon in which structures with continuous changes in curvature can reduce stress concentration. The N-doped C-modified hierarchical nanoporous Si anode with a microcurved pore wall (N-C@m-HNP Si) is prepared from inexpensive Mg-55Si alloys using a simple chemical etching and heat treatment process. When used as the anode for lithium-ion batteries, the N-C@m-HNP Si anode exhibits initial charge/discharge specific capacities of 1092.93 and 2636.32 mAh g-1 at 0.1 C (1 C = 3579 mA g-1), respectively, and a stable reversible specific capacity of 1071.84 mAh g-1 after 200 cycles. The synergy of the hierarchical porous structure with a microcurved pore wall and the N-doped C-modified layer effectively improves the electrochemical performance of N-C@m-HNP Si, and the effectiveness of stress-relief engineering is quantitatively analyzed through the theory of elastic bending of thin plates. Moreover, the formation process of Li15Si4 crystals, which causes substantial mechanical stress, is investigated using first-principles molecular dynamic simulations to reveal their tendency to occur at different scales. The results demonstrate that the hierarchical nanoporous structure helps to inhibit the transformation of amorphous LixSi into metastable Li15Si4 crystals during lithiation.

14.
ACS Appl Mater Interfaces ; 16(10): 12398-12406, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412364

RESUMEN

The metal-nitrogen-carbon (M-N-C)-based catalysts are promising to replace PGM (platinum group metal) to accelerate oxygen reduction reaction due to their excellent electrocatalytic performance. However, the inferior intrinsic activity and poor active site density confining further improvement in their performance. Modulating the electronic structure and reasonably designing the pore structure are widely acknowledged effective strategies to boost the activity of the M-N-C catalysts. However, it is a great challenge to form abundant pores to regulate the electronic structure via the facile method. Herein, a hierarchical, porous dual-atom catalyst FeNi-NPC-1000 has been architectured by the Na2CO3 template method and bimetallic doping modification strategy. Benefitting from the optimized pore and electronic structure, the as-prepared FeNi-NPC-1000 possesses a high specific surface area (1412.8 m2 g-1) and improved ORR activity (E1/2 = 0.877 V vs RHE), which is superior to that of Pt/C (E1/2 = 0.867 V vs RHE). With the evidence of AC-STEM, XAS, and DFT, the FeNi-N8-C moiety is proven to be the key active site to realize high-efficiency ORR catalysis. When assembled it as an air cathode of ZABs, FeNi-NPC-1000 displays superior discharge performance (Pmax = 367.1 mW cm-2) and a stable battery long-life. This article will provide a new strategy for designing dual-metal atomic catalysts applied in metal-air batteries.

15.
Int J Biol Macromol ; 257(Pt 2): 128745, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101673

RESUMEN

The commercial graphene for Li ion batteries (LIBs) has high cost and low capacity. Therefore, it is necessary to develop a novel carbon anode. The cellulose nanowires (CNWs), which has advantages of low cost, high carbon content, is thought as a good carbon precursor. However, direct carbonization of CNWs leads to low surface area and less mesopores due to its easy aggregation. Herein, the metal-organic frameworks (MOFs) have been explored as templates to prepare porous carbon due to their 3D open pore structures. The porous carbon was developed with the coordination effect of CNWs and MOFs. The precursor of MOFs coordinates with the -OH and - COOH groups in the CNWs to provide stable structure. And the MOFs was grown in situ on CNWs to reduce aggregation and provide higher porosity. The results show that the porous carbon has high specific capacity and fast Li+/electronic conductivity. As anode for LIBs, it displays 698 mAh g-1 and the capacity retention is 85 % after 200 cycles. When using in the full-battery system, it exhibits energy density of 480 Wh kg-1, suggesting good application value. This work provides a low-cost method to synthesize porous carbon with fast Li+/electronic conductivity for high-performance LIBs.


Asunto(s)
Carbono , Estructuras Metalorgánicas , Porosidad , Iones , Celulosa , Electrodos , Litio
16.
Small ; 20(21): e2308928, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098313

RESUMEN

Modulation of electronic structure and composition is widely recognized as an effective strategy to improve electrocatalyst performance. Herein, using a simple simultaneous carbonization and sulfidation strategy, NiFe double hydroxide-derived Fe5Ni4S8 (FNS) nanosheets immobilized on S-doped carbonized wood (SCW) framework by taking benefit of the orientation-constrained cavity and hierarchical porous structure of wood is proposed. Benefiting from the synergistic relationships between bimetal ions, the spatial confinement offered by the wood cavity, and the enhanced structural effects of the nanosheets array, the FNS/SCW exhibit enhanced intrinsic activity, increased accessibility of catalytically active sites, and convection-facilitated mass transport, resulting in an excellent oxygen evolution reaction (OER) activity and durability. Specifically, it takes a low overpotential of 230 mV at 50 mA cm-2 and potential increase is negligible (3.8%) at 50 mA cm-2 for 80 hours. Density functional theory (DFT) calculations further reveal that the synergistic effect of bimetal can optimize the electronic structure and lower the reaction energy barrier. The FNS/SCW used as the cathode of zinc-air battery shows higher power density and excellent durability relative to commercial RuO2, exhibiting a good application prospect. Overall, this research offers proposals for designing and producing effective OER electrocatalysts using sustainable resources.

17.
Chemistry ; 29(69): e202302121, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37672360

RESUMEN

Potassium-ion battery is promising for its high abundance and low redox potential. As a conversion cathode, Te possesses high conductivity and theoretical volumetric capacity to couple with potassium. The stubborn issues of K-Te battery focus on the large volume change and rapid structure degradation of Te. Herein, we produce biomass carbon from mangosteen shell in a facile method, and obtain a hierarchical porous host with abundance of micropores and mesopores, which is obviously beneficial for hosting Te during K+ storage in K-Te battery. The specific capacity reach to 560 mAh g-1 in the initial cycle at 0.1 A g-1 , and remained 83.8 % after 200 cycles. Impressively, at a high current density of 2.0 A g-1 , the specific capacity still remained 62.6 % after 5000 cycle. These results endow such strategy an efficient way for the development of K-Te batteries.

18.
J Colloid Interface Sci ; 651: 544-557, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562297

RESUMEN

Here, we developed a Ca2+ modified diatom biosilica-based hemostat (DBp-Ca2+) with a full scale hierarchical porous structure (pore sizes range from micrometers to nanometers). The unique porous size in stepped arrangement of DBp-Ca2+give it selective adsorption capacity during coagulation process, resulted in rapid hemorrhage control. Based on in vitro and in vivo studies, it was confirmed that the primary micropores of DBp-Ca2+gave it high porosity to hold water (water absorption: 78.46 ± 1.12 %) and protein (protein absorption: 83.7 ± 1.33 mg/g). Its secondary mesopores to macropores could reduce of water diffusion length to accelerate blood exchange (complete within 300 ms). The tertiary stacking pores of DBp-Ca2+ could absorb platelets and erythrocytes to reduce more than 50 % of thrombosis time, and provided enough contact between Ca active site and coagulation factors for triggering clotting cascade reaction. This work not only developed a novel DBs based hemostat with efficient hemorrhage control, but also provided new insights to study procoagulant mechanism of inorganic hemostat with hierarchical porous structure from selective adsorption to rapid hemostasis.


Asunto(s)
Diatomeas , Humanos , Porosidad , Diatomeas/química , Adsorción , Hemostasis , Hemorragia , Agua/química
19.
Chempluschem ; 88(7): e202300238, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37310283

RESUMEN

Nitrogen-doped carbon is considered one of the most promising oxygen reduction catalysts due to its low cost and high activity, however, it still falls short of Pt/C. In this study, we report a strategy for the preparation of highly reactive N-doped hierarchical porous carbon by primary pyrolysis using zinc acetate as a stand-alone zinc source and amino-rich reactants as carbon and nitrogen sources to introduce Zn-Nx structures into mesoporous structures generated by the hard template method using the strong coordination of zinc and amino groups. Benefited from the simultaneous optimization of the hierarchical porous structure and nitrogen-doping, the half-wave potential of Zn(OAc)2 -DCD/HPC is as high as 0.909 V vs. RHE, much better than that of commercial Pt/C catalysts (0.872 V vs. RHE). In addition, zinc-air batteries assembled with Zn(OAc)2 -DCD/HPC (Pmax =198 mW cm-2 ) as the cathode exhibit higher peak power density compared to Pt/C (Pmax =168 mW cm-2 ). This strategy might open up new opportunities for designing and developing highly active metal-free catalysts.


Asunto(s)
Carbono , Zinc , Humanos , Porosidad , Hipoxia , Nitrógeno , Oxígeno
20.
Chemistry ; 29(52): e202301565, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37358246

RESUMEN

Molybdenum dioxide (MoO2 ) demonstrates a big potential toward lithium-ion storage due to its high theoretical capacity. The sluggish reaction kinetics and large volume change during cycling process, however, unavoidably lead to inferior electrochemical performance, thus failing to satisfy the requirements of practical applications. Herein, we developed a molybdenum-based oxyacid salt confined pyrolysis strategy to achieve a novel hierarchical porous MoO2 @Mo2 N@C composite. A two-step successive annealing process was proposed to obtain a hybrid phase of MoO2 and Mo2 N, which was used to further improve the electrochemical performance of MoO2 -based anode. We demonstrate that the well-dispersed MoO2 nanoparticles can ensure ample active sites exposure to the electrolyte, while conductive Mo2 N quantum dots afford pseudo-capacitive response, which conduces to the migration of ions and electrons. Additionally, the interior voids could provide buffer spaces to surmount the effect of volume change, thereby avoiding the fracture of MoO2 nanoparticles. Benefiting from the aforesaid synergies, the as-obtained MoO2 @Mo2 N@C electrode demonstrates a striking initial discharge capacity (1760.0 mAh g-1 at 0.1 A g-1 ) and decent long-term cycling stability (652.5 mAh g-1 at 1.0 A g-1 ). This work provides a new way for the construction of advanced anode materials for lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA