Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(1): e08742, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35059524

RESUMEN

Ovary follicular development is a progressive system from the beginning of small cortical follicles to the ovulation of hierarchical follicles. The review was conducted to provide information on the indigenous chickens commonly used for egg production, chicken ovarian follicles morphology and expression of growth differentiation factor 9 (GDF9) gene in ovarian follicles and its relationship with egg production. The research databases used in the study include google scholar, Science Direct, PubMed, JSTOR and Cambridge Core. Google, Yahoo and Baidu search engines were used to search the information. In this study, the papers selected for use were original research articles and reviews to ensure that the information used was from research results. Besides, only recent English papers, 2010-2021, were used. The keywords used to search for articles were chicken ovarian follicles, ovarian morphology and GDF9 gene expression. The documents showed that pre-hierarchical follicles include many small and large white follicles, which are about 2-5mm in diameter and 5 to 6 small yellow follicles (SYF) that are about 5-10mm in diameter. Preovulatory follicles are about five to six in number and above 10mm in diameter, with the sizes from F6 to F1, with F1 as the largest follicle. Further, the studies revealed that GDF9 gene mRNA is expressed in the highest concentration in small yellow follicles and other studies reported that the expression of GDF9 gene has been found in follicles of the primary to preovulatory stages in chickens. This review concludes that the GDF9 gene expression is mainly throughout follicular growth and it stimulates the proliferation of pre-hierarchical granulosa cells. The increased egg production in chickens depends on progressive developmental stages and the growth of ovarian follicles.

2.
Animal ; 14(10): 2100-2108, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32367795

RESUMEN

Ovarian follicle selection is a natural biological process in the pre-ovulatory hierarchy in birds that drives growing follicles to be selected within the ovulatory cycle. Follicle selection in birds is strictly regulated, involving signaling pathways mediated by dietary nutrients, gonadotrophic hormones and paracrine factors. This study aimed to test the hypothesis that dietary Ca may participate in regulating follicle selection in laying ducks through activating the signaling pathway of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/extracellular signal-regulated kinase (ERK), possibly mediated by gonadotrophic hormones. Female ducks at 22 weeks of age were initially fed one of two Ca-deficient diets (containing 1.8% or 0.38% Ca) or a Ca-adequate control diet (containing 3.6% Ca) for 67 days (depletion period), then all birds were fed the Ca-adequate diet for an additional 67 days (repletion period). Compared with the Ca-adequate control, ducks fed 0.38% Ca during the depletion period had significantly decreased (P < 0.05) numbers of hierarchical follicles and total ovarian weight, which were accompanied by reduced egg production. Plasma concentration of FSH was decreased by the diet containing 1.8% Ca but not by that containing 0.38%. The ovarian content of cAMP was increased with the two Ca-deficient diets, and phosphorylation of PKA and ERK1/2 was increased with 0.38% dietary Ca. Transcripts of ovarian estradiol receptor 2 and luteinizing hormone receptor (LHR) were reduced in the ducks fed the two Ca-deficient diets (P < 0.05), while those of the ovarian follicle stimulating hormone receptor (FSHR) were decreased in the ducks fed 0.38% Ca. The transcript abundance of ovary gap junction proteins, A1 and A4, was reduced with the Ca-deficient diets (P < 0.05). The down-regulation of gene expression of gap junction proteins and hormone receptors, the increased cAMP content and the suppressed hierarchical follicle numbers were reversed by repletion of dietary Ca. These results indicate that dietary Ca deficiency negatively affects follicle selection of laying ducks, independent of FSH, but probably by activating cAMP/PKA/ERK1/2 signaling pathway.


Asunto(s)
Calcio de la Dieta , Patos , Adenosina Monofosfato , Animales , Femenino , Hormona Folículo Estimulante , Células de la Granulosa , Folículo Ovárico , Transducción de Señal
3.
Animals (Basel) ; 9(12)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817265

RESUMEN

In this study, using a laying hen model, we determined the expression of FOXL2 and RSPO1 in different central and peripheral tissue and ovarian follicles at different stages of development. At the same time, mRNA expression of both genes in granulosa and theca cells harvested from follicles at different stages of folliculogenesis was also evaluated. Finally, we assessed the effect of leptin treatment on expression of FOXL2 and RSPO1 in in vitro cultured granulosa cells harvested from 1-5 mm to F3-F1 follicles. Our RT-qPCR results revealed that a comparatively higher expression of FOXL2 and RSPO1 was observed in ovary, hypothalamus, and pituitary. Abundant mRNA expression of FOXL2 was observed in small prehierarchical follicles (1-1.9 and 2-2.9 mm follicles; p < 0.05), whereas mRNA expression of RSPO1 showed an increasing trend in large hierarchical follicles (F5-F1), and its abundant expression was observed in post-ovulatory follicles. FOXL2 mRNA expression was stable in granulosa cells harvested from 3-5 mm to F4 follicles, and exhibited a significantly higher expression in large hierarchical follicles. Conversely, relatively low mRNA expression of FOXL2 was observed in theca cells. RSPO1 mRNA expression was relatively lower in granulosa cells; however, theca cells exhibited a significantly higher mRNA expression of RSPO1 in F4 to F1 follicles. In the next experiment, we treated the in vitro cultured granulosa cells with different concentrations (1, 10, 100, and 1000 ng/mL) of exogenous leptin. Compared to the control group, a significant increase in the expression of FOXL2 was observed in groups treated with 1, 10, and 100 ng/mL leptin, whereas expression of RSPO1 was increased in all leptin-treated groups. When treated with 100 ng/mL leptin, FOXL2 and RSPO1 expression was upregulated in cultured granulosa cells harvested from both large hierarchical (F3-F1) and small prehierarchical follicles (1-5 mm). Based on these findings and evidence from mainstream literature, we envisage that FOXL2 and RSPO1 genes (in connection with hypothalamic-hypophysis axis) and leptin (via modulation of FOXL2 and RSPO1 expression) might have significant physiological roles, at least in part, in modulating the ovarian mechanisms, such as follicle development, selection, and steroidogenesis in laying hens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA