Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410291, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990168

RESUMEN

Establishing unprecedented types of bonding interactions is one of the fundamental challenges in synthetic chemistry, paving the way to new (electronic) structures, physicochemical properties, and reactivity. In this context, unsupported element-element interactions are particularly noteworthy since they offer pristine scientific information about the newly identified structural motif. Here we report the synthesis, isolation, and full characterization of the heterobimetallic Bi / Pt compound [Pt(PCy3)2(BiMe2)(SbF6)] (1), bearing the first unsupported transition metal→bismuth donor/acceptor interaction as its key structural motif. 1 is surprisingly robust, its electronic spectra are interpreted in a fully relativistic approach, and it reveals an unprecedented reactivity towards H2.

2.
Chemistry ; 30(42): e202401696, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38758593

RESUMEN

The synthesis of phosphine acetylide amidinate stabilized copper(I) and gold(I) heterobimetallic complexes was achieved by reacting ligand [{Ph2PC≡CC(NDipp)2}Li(thf)3] (Dipp=2,6-N,N'-diisopropylphenyl) with CuCl and Au(tht))Cl, yielding the eight membered ring [{Ph2PC≡CC(NDipp)2}2Cu2] and the twelve membered ring [{Ph2PC≡CC(NDipp)2}2Au2]. {Ph2PC≡CC(NDipp)2}2Cu2] features a Cu2 unit, which is bridged by two amidinate ligands, served as a metalloligand to synthesize the heterobimetallic CuI/AuI complexes [{(AuX)Ph2PC≡CC(NDipp)2}2Cu2] (X=Cl, C6F5). In these reactions, the central ring structure is retained. In contrast, when the twelve membered ring [{Ph2PC≡CC(NDipp)2}2Au2] was reacted with CuX (X=Cl, Br, I and Mes), the reaction led to the rearrangement of the central ring structure to give [{(AuX)Ph2PC≡CC(NDipp)2}2Cu2] (X=Cl, Br, I and Mes), which feature the same the eight membered Cu2 ring as above. These compounds were also synthesized by a one-pot reaction. The luminescent heterobimetallic complexes were further investigated for their photophysical properties.

3.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474663

RESUMEN

The controlled formation of mixed-metal bimetallics was realised through use of a fac-[Re(CO)3(N,N'-bpy-P)Cl] complex bearing an exogenous 2,4,6-trioxa-1,3,5,7-tetramethyl-8-phosphaadamantane donor at the 5-position of the bpy. The introduction of gold, silver, and rhodium with appropriate secondary ligands was readily achieved from established starting materials. Restricted rotation about the C(bpy)-P bond was observed in several of the bimetallic complexes and correlated with the relative steric bulk of the second metal moiety. Related chemistry with the 6-substituted derivative proved more limited in scope with only the bimetallic Re/Au complex being isolated.

4.
Chemistry ; 30(8): e202303789, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37984073

RESUMEN

We describe a family of cationic methylstannylene and chloro- and azidosilylene organoplatinum(II) complexes supported by a neutral, binucleating ligand. Methylstannylenes MeSn:+ are stabilized by coordination to PtII and are formed by facile Me group transfer from dimethyl or monomethyl PtII complexes, in the latter case triggered by concomitant B-H, Si-H, and H2 bond activation that involves hydride transfer from Sn to Pt. A cationic chlorosilylene complex was obtained by formal HCl elimination and Cl- removal from HSiCl3 under ambient conditions. The computational studies show that stabilization of cationic methylstannylenes and cationic silylenes is achieved through weak coordination to a neutral N-donor ligand binding pocket. The analysis of the electronic potentials, as well as the Laplacian of electron density, also reveals the differences in the character of Pt-Si vs. Pt-Sn bonding. We demonstrate the importance of a ligand-supported binuclear Pt/tetrel core and weak coordination to facilitate access to tetrylium-ylidene Pt complexes, and a transmetalation approach to the synthesis of MeSnII :+ derivatives.

5.
Photochem Photobiol Sci ; 23(1): 119-132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38082202

RESUMEN

The combined action of singlet oxygen (1O2) and photoinduced carbon monoxide (CO) released by tricarbonyl metal complexes is a promising synergic treatment against multi-resistant bacterial infections. In this work, we explore the use of a polydentate ligand (bpm = 2,2-bipyrimidine) that offers the opportunity to accommodate two metal centers exhibiting both singlet oxygen generation and carbon monoxide releasing properties in a single molecule. A series of monometallic ([(bpm)M(CO)3Br]; M = Mn, Re) and homo or hetero bimetallic ([Br(CO)3M(bpm)M'(CO)3Br]; M = Mn, Re) compounds were synthesized in moderate to good yields by modulating the metal precursor or the stoichiometry, also the syn:anti isomers ratio for the bimetallic complexes was dependent on the experimental conditions used. DFT modelling shows the anti-isomer is more stable than the syn-isomer by less than 8 kJ mol-1, which is consistent with those experimentally observed in terms of majority product and the effect of experimental conditions over the anti-syn ratio. The HOMO-LUMO gap is lower for the mono and bimetallic rhenium(I) compounds compared to the values for the manganese(I) analogues, while the heterometallic complex shows intermediate values for the anti-isomer. The photophysical characterization shows typical absorption and emission bands with MLCT character. In addition, CO-release and 1O2 generation quantum yields were evaluated for the monometallic Mnbpm and Rebpm homologues and compared with values obtained for the homo- and hetero-bimetallic complexes. Interestingly the replacement of a Mn(CO)3Br moiety in MnbpmMn by a Re(CO)3Br one makes the heterometallic MnbpmRe molecule a molecular oxygen sensitizer and partially retaining its carbon monoxide releasing ability.

6.
Adv Sci (Weinh) ; 11(6): e2307113, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044312

RESUMEN

With the goal of generating hetero-redox levels on metals as well as on nitric oxide (NO), metallodithiolate (N2 S2 )CoIII (NO- ), N2 S2 = N,N- dibenzyl-3,7-diazanonane-1,9-dithiolate, is introduced as ligand to a well-characterized labile [Ni0 (NO)+ ] synthon. The reaction between [Ni0 (NO+ )] and [CoIII (NO- )] has led to a remarkable electronic and ligand redistribution to form a heterobimetallic dinitrosyl cobalt [(N2 S2 )NiII ∙Co(NO)2 ]+ complex with formal two electron oxidation state switches concomitant with the nickel extraction or transfer as NiII into the N2 S2 ligand binding site. To date, this is the first reported heterobimetallic cobalt dinitrosyl complex.

7.
Angew Chem Int Ed Engl ; 62(48): e202310775, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37837365

RESUMEN

We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII (bpbp)(µ-OAc)2 FeIII ]2+ , CuFe-OAc), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103  s-1 and selectivity of 96.0 % in the presence of Et3 NH+ . This performance significantly outcompetes its homobimetallic analogues (2.7 s-1 of CuCu-OAc with %H2 O2 selectivity of 98.9 %, and inactive of FeFe-OAc) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O-O bond cleavage via a CuII (µ-η1 : η2 -O2 )FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.

8.
Nanotechnology ; 34(49)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37673043

RESUMEN

Exploring highly active oxygen reduction electrocatalysts with low precious metals content is imperative but remains a considerable challenge. Herein, a series of heterobimetallic multi-walled carbon nanotubes (MWCNTs) electrocatalysts based on metal complexes are presented. These electrocatalysts feature diverse transition metals (M=Mn, Fe, Co, Ni) 5,15-bromophenyl-10, 20-methoxyphenyl porphyrin (MBMP) and tetrakis(triphenylphosphine)palladium (0) (Pd[P(Ph3)4]) anchored non-covalently on its surface. The resulting NiBMP-based MWCNTs with Pd[P(Ph3)4] (PdNiN4/MWCNTs) display outstanding electrocatalytic oxygen reduction activity (onset potential, 0.941 V; half wave potential, 0.830 V) and robust long-term durability in alkaline electrolyte. While in neutral condition, the MnBMP-based MWCNTs with Pd[P(Ph3)4] (PdMnN4/MWCNTs) are the most active heterobimetallic ORR catalyst and produce ultra-low concentration hydrogen peroxide (H2O2yield, 1.2%-1.3%). Synergistically tuning the ORR electrocatalytic activity and electron transfer pathway is achieved by the formation of NiBMP/MnBMP-Pd[P(Ph3)4] active sites. This work indicates such metalloporphyrin-Pd[P(Ph3)4] active sites on MWCNTs have significantly positive influence on electrocatalytic ORR systems and provides facile and mild strategy for designing highly efficient ORR electrocatalysts with ultra-low loading precious metal.

9.
Angew Chem Int Ed Engl ; 62(44): e202311598, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698240

RESUMEN

Although 2-furyl-carbenes (furfurylidenes) are prone to instantaneous electrocyclic ring opening, chiral [BiRh]-paddlewheel complexes empowered by London dispersion allow (trifluoromethyl)furfurylidene metal complexes to be generated from a bench-stable triftosylhydrazone precursor. These reactive intermediates engage in asymmetric [2+1] cycloadditions and hence open entry into valuable trifluoromethylated cyclopropane or -cyclopropene derivatives in optically active form, which are important building blocks for medicinal chemistry but difficult to make otherwise.

10.
Chemistry ; 29(65): e202302180, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37702918

RESUMEN

The bis(azolium) salt [L1-H2 ]Br2 was found to serve as a suitable platform for accessing the heterobimetallic IrIII -M (M=PdII /AuI ) and PdII -IrIII complexes. Initially, selective mono-metalation of [L1-H2 ]Br2 yielded an orthometalated IrIII - or non-orthometalated PdII -complex. Sequential metalation of the mono-IrIII complex resulted in the formation of heterobimetallic IrIII -PdII /AuI complexes. Similarly, a distinct heterobimetallic PdII -IrIII complex was synthesized starting from the mono-PdII complex. Further, the corresponding homobimetallic IrIII -IrIII and PdII -PdII complexes were directly obtained from [L1-H2 ]Br2 . Additionally, monometallic PdII and IrIII analogues were synthesized from [L2-H]Br and [L3-H]Br, respectively. The heterobimetallic IrIII -PdII and PdII -IrIII complexes were then evaluated as catalysts in various one-pot tandem catalytic reactions in which they demonstrated superior activity than the mixtures of both their corresponding homobimetallic IrIII -IrIII /PdII -PdII and monometallic IrIII /PdII counterparts, under the constant concentrations of metal centers. Moreover, while comparing complexes IrIII -PdII and PdII -IrIII , the former exhibits higher activity in all the studied reactions. All these findings suggest the presence of some form of cooperativity between the two metal centers (Ir and Pd) connected by a single ligand framework in IrIII -PdII and PdII -IrIII complex, with IrIII -PdII displaying better cooperativity that has been validated by electrochemical, NMR, and DFT studies.

11.
Front Chem ; 11: 1253008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608865

RESUMEN

An unprecedented palladium/arsenic-based catalytic cycle for the hydration of nitriles to the corresponding amides is here described. It occurs in exceptionally mild conditions such as neutral pH and moderate temperature (60°C). The versatility of this new catalytic cycle was tested on various nitriles from aliphatic to aromatic. Also, the effect of ring substitution with electron withdrawing and electron donating groups was investigated in the cases of aromatic nitriles, as well as the effect of potentially interferent functional groups such as hydroxy group or pyridinic nitrogen. Furthermore, a pilot study on the potential suitability of this approach for its scale-up is presented, revealing that the catalytic cycle could be potentially and quickly scaled up.

12.
Angew Chem Int Ed Engl ; 62(39): e202308359, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37488942

RESUMEN

Ferrocene 1 and its dianionic Fe(bis)(dicarbollide) analogue 2 are classical compounds that display unusual stability. These compounds are not known to undergo transmetallation chemistry of the Fe-center and have been used extensively as chemical building blocks with consistent integrity. In this manuscript we describe the preparation of a charge compensated Fe(bis)(dicarbollide) species 3 Fe and its unprecedented transmetallation chemistry to Ir. Such reactions are hitherto unknown for any transition metal metallocene or metallacarborane complex. Additionally, we show that 3 Fe can be deprotonated to afford the corresponding bis(NHC) Li-carbenoid 5 that also displays unique reactivity. When 5 is reacted with [Ir(COD)Cl]2 it also undergoes a rapid transmetallation of the ferrocene "like" core to afford 6 but with the added twist that the Li-carbenoid moiety stays intact and does not transmetalate. However, when 6 is subsequently treated with CuCl, the Li-carbenoid transmetalates to Cu, which allows the controlled formation of the corresponding heterobimetallic Ir/Cu aggregate. Lastly, when Li-carbenoid 5 is treated directly with CuCl, a double transmetallation occurs from both Fe to Cu and Li-carbenoid to Cu, resulting in the trimetallic Cu cluster 8. These novel reactions pave the way for new synthetic methods to build complicated polymetallic clusters in a controlled fashion.

13.
Chemistry ; 29(52): e202301673, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37367483

RESUMEN

As a dimetal-binding rigid scaffold, 2-(pyridin-2-yl)imidazo[1,5-b]pyridazine-7-ylidene was introduced. The scaffold was first converted into a meridional Au,N,N-tridentate ligand through binding of a Au(I)Cl moiety at the carbene center. The Au(I) center and the N,N-chelating moiety were expected to function as metallophilic and 4e-σ-donative interaction sites, respectively, in the binding of the second metal center. In this manner, various trinuclear heterobimetallic complexes were synthesized with different 3d-metal sources, such as cationic CuI , CuII , NiII , and CoII salts. SC-XRD analysis showed that the mono-3d-metal di-gold(I) trinuclear heterobimetallic complexes were constructed through gold(I)-metal interactions. Metallophilic interactions were also investigated by quantum chemical calculations including the AIM and IGMH methods.

14.
Chem Asian J ; 18(15): e202300484, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345323

RESUMEN

The 'click'-derived 1,2,3-triazolium salts [L1/L2-H]I (1-(4-iodo/bromo-phenyl)-1H-1,2,3-triazolium salt) featuring two distinct coordination sites, one via oxidative addition and other via classical deprotonation cum metalation, were designed and explored towards the synthesis of various mono- and bimetallic complexes. Accordingly, a series of well-characterized 1,2,3-triazol-5-ylidene coordinated cyclometalated transition metal complexes (1-3) were obtained. However, these complexes were found to be ineffective in accessing the desired heterobimetallic complexes. Nevertheless, same ligand systems readily underwent oxidative addition with Pd0 metal precursors, to give the PdII complexes 4/5, and the considerable change and reversal in chemical shift values of the triazole C4/C5-backbone protons (C4-H being downfield shifted than that of C5-H) of these oxidatively added PdII complexes were detected. The PdII complex 5 with chelating DPPE was finally successfully applied for the synthesis of the heterobimetallic PdII -RuII complex 6 and 2D NMR analyses, as well as DFT calculations supported the formation of the rare C4/C5-unprotected 1,2,3-triazol-4-ylidene coordinated RuII -complex.

15.
Angew Chem Int Ed Engl ; 62(29): e202306360, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37211534

RESUMEN

Periodically arranging coordination-distinct actinides into one crystalline architecture is intriguing but of great synthetic challenge. We report a rare example of a heterobimetallic actinide metal-organic framework (An-MOF) by a unique reaction-induced preorganization strategy. A thorium MOF (SCU-16) with the largest unit cell among all Th-MOFs was prepared as the precursor, then the uranyl was precisely embedded into the MOF precursor under oxidation condition. Single crystal of the resulting thorium-uranium MOF (SCU-16-U) shows that a uranyl-specific site was in situ induced by the formate-to-carbonate oxidation reaction. The heterobimetallic SCU-16-U exhibits multifunction catalysis properties derived from two distinct actinides. The strategy proposed here offers a new avenue to create mixed-actinide functional material with unique architecture and versatile functionality.

16.
Molecules ; 28(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241974

RESUMEN

Inspired by multimetallic assemblies and their role in enzyme catalysis, chemists have developed a plethora of heterobimetallic complexes for application in homogeneous catalysis. Starting with small heterobimetallic complexes with σ-donating and π-accepting ligands, such as N-heterocyclic carbene and carbonyl ligands, more and more complex systems have been developed over the past two decades. These systems can show a significant increase in catalytic activity compared with their monometallic counterparts. This increase can be attributed to new reaction pathways enabled by the presence of a second metal center in the active catalyst. This review focuses on mechanistic aspects of heterobimetallic complexes in homogeneous catalysis. Depending on the type of interaction of the second metal with the substrates, heterobimetallic complexes can be subdivided into four classes. Each of these classes is illustrated with multiple examples, showcasing the versatility of both, the types of interactions possible, and the reactions accessible.

17.
Angew Chem Int Ed Engl ; 62(18): e202218859, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869660

RESUMEN

We reported herein the development of heterobimetallic NiFe molecular platform to understand NiFe synergistic effect in water oxidation catalysis. Compared to homonuclear bimetallic compounds (NiNi and FeFe), NiFe complex possesses more remarkable catalytic water oxidation performance. Mechanistic studies suggest that this remarkable difference is attributed to the fact that NiFe synergy can effectively promote O-O bond formation. The generated NiIII (µ-O)FeIV =O is the key intermediate and O-O bond was formed via intramolecular oxyl-oxo coupling between bridged O radical and terminal FeIV =O moiety.

18.
Materials (Basel) ; 16(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903061

RESUMEN

The synthesis, as well as the mesomorphic and electrochemical properties, of a hetero-bimetallic coordination complex able to self-assemble into a columnar liquid crystalline phase is reported herein. The mesomorphic properties were investigated by polarized optical microscopy (POM), differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) analysis. Electrochemical properties were explored by cyclic voltammetry (CV), relating the hetero-bimetallic complex behaviour to previously reported analogous monometallic Zn(II) compounds. The obtained results highlight how the presence of the second metal centre and the supramolecular arrangement in the condensed state pilot the function and properties of the new hetero-bimetallic Zn/Fe coordination complex.

19.
Chemistry ; 29(32): e202300459, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929020

RESUMEN

The heterobimetallic triple-decker complex [(Cp*Fe)(Cp'''Co)(µ,η5 : η4 -P5 )] (1) was functionalized by main group nucleophiles and subsequently electrophilically quenched or oxidized. Reacting 1 with group 14 nucleophiles revealed different organo-substituted P5 R middle-decks depending on the steric and electronic effects of the used alkali metal organyls (2: R=tBu; 3: R=Me). Further, with group 15 nucleophiles, the first structural characterized monosubstituted complexes with phosphanides could be obtained as P5 ligands containing exocyclic {PR2 } units (4: R=Cy, H; 5: R=Ph). These monoanionic complexes 2-5 were isolated and subsequent electrophilic quenching revealed novel types of neutral functionalized polyphosphorus complexes. These complexes bear formal chains of P5 R'R'' (6: R'=tBu, R'=Me) in a 1,3-disubstitution pattern or P6 R'R''R''' units (7: R'=Cy, R''=H, R'''=Me; 8: R'=Me, R''=Ph, R'''=Me) in a 1,1,3-substitution as middle-decks stabilized by one {Cp'''Co} and one {Cp*Fe} fragment. One-electron oxidation of 2, 3 or 5 by AgBF4 gave access to paramagnetic triple-decker complexes bearing P5 R middle-decks in various coordination fashions (R=tBu (10), R=PPh2 (12)). Interestingly, for R=Me (11), a dimerization is observed revealing a diamagnetic tetranuclear cluster containing a unique dihydrofulvalene-type P10 R2 ligand. All complexes were characterized by crystallographic and spectroscopic methods (EPR, multinuclear NMR and mass spectrometry) and their electronic structures were elucidated by DFT calculations.

20.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771182

RESUMEN

Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3- (1) and [RuIII(CN)6]3- (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3- anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)-CN-MnIII fragments: -JxSMxSMnx-JySMySMny-JzSMzSMnz, with opposite sign of exchange parameters Jx = -22, Jy = +28, Jz = -26 cm-1 and Jx = -18, Jy = +20, Jz = -18 cm-1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3- and [RuIII(CN)6]3- spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers's 1D Ising model and anisotropic Heisenberg model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA