Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(17): 3679-3689.e3, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597519

RESUMEN

Plants perceive herbivory-induced volatiles and respond to them by upregulating their defenses. To date, the organs responsible for volatile perception remain poorly described. Here, we show that responsiveness to the herbivory-induced green leaf volatile (Z)-3-hexenyl acetate (HAC) in terms of volatile emission, transcriptional regulation, and jasmonate defense hormone activation is largely constrained to younger maize leaves. Older leaves are much less sensitive to HAC. In a given leaf, responsiveness to HAC is high at immature developmental stages and drops off rapidly during maturation. Responsiveness to the non-volatile elicitor ZmPep3 shows an opposite pattern, demonstrating that this form of hyposmia (i.e., decreased sense of smell) is not due to a general defect in jasmonate defense signaling in mature leaves. Neither stomatal conductance nor leaf cuticle composition explains the unresponsiveness of older leaves to HAC, suggesting perception mechanisms upstream of jasmonate signaling as driving factors. Finally, we show that hyposmia in older leaves is not restricted to HAC and extends to the full blend of herbivory-induced volatiles. In conclusion, our work identifies immature maize leaves as dominant stress volatile-sensing organs. The tight spatiotemporal control of volatile perception may facilitate within plant defense signaling to protect young leaves and may allow plants with complex architectures to explore the dynamic odor landscapes at the outer periphery of their shoots.


Asunto(s)
Anosmia , Zea mays , Zea mays/genética , Ciclopentanos , Herbivoria
2.
J Chem Ecol ; 49(9-10): 498-506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37278905

RESUMEN

Air potato, Dioscorea bulbifera L., is an invasive vine found in the southeastern United States and is native to Asia and Africa. The air potato leaf beetle Lilioceris cheni (Coleoptera: Chrysomelidae), is a host specific biological control agent introduced for D. bulbifera control. In this study, odor cues that control the attraction of L. cheni to D. bulbifera were investigated. The first experiment investigated the response of L. cheni to D. bulbifera leaves versus no leaves in the presence or absence of air flow. The experiment showed a significant response of L. cheni to D. bulbifera leaves in the presence of air flow with leaves placed upwind. When air flow and/or leaves were absent, L. cheni dispersed randomly between the upwind and downwind targets, indicating L. cheni uses volatiles from D. bulbifera in host selection. The second experiment investigated L. cheni response to undamaged, larval-damaged, and adult-damaged plants. Lilioceris cheni showed preference to move towards conspecific damaged plants compared to undamaged plants but did not discriminate between larvae-damaged or adult-damaged plants. The third experiment investigated volatile profiles of damaged D. bulbifera plants using gas chromatography coupled with mass spectroscopy. We found significant differences in volatile profiles between adult and larval damaged plants compared to mechanically damaged and undamaged plants, with increases in 11 volatile compounds. However, larval and adult-damaged volatile profiles did not differ. The information acquired during this study could be used to develop strategies to monitor for L. cheni and improve its biological control program.


Asunto(s)
Escarabajos , Dioscorea , Solanum tuberosum , Compuestos Orgánicos Volátiles , Animales , Escarabajos/fisiología , Larva , Odorantes , Compuestos Orgánicos Volátiles/análisis , Hojas de la Planta/química , Herbivoria
3.
Plants (Basel) ; 12(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36904040

RESUMEN

Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, we examined the effects of herbivory by the generalist herbivore Spodoptera litura on the growth, physiology, biomass allocation and DNA methylation level of the invasive plant Alternanthera philoxeroides in the first- (G1), second- (G2) and third-generation (G3). We also tested the effects of root fragments with different branching orders (i.e., the primary- or secondary-root fragments of taproots) of G1 on offspring performance. Our results showed that G1 herbivory promoted the growth of the plants in G2 that sprouted from the secondary-root fragments of G1 but had a neutral or negative effect on the growth of the plants in G2 from the primary-root fragments. The growth of plants in G3 was significantly reduced by G3 herbivory but not affected by G1 herbivory. Plants in G1 exhibited a higher level of DNA methylation when they were damaged by herbivores than when they were not, while neither plants in G2 nor G3 showed herbivory-induced changes in DNA methylation. Overall, the herbivory-induced growth response within one vegetative generation may represent the rapid acclimatization of A. philoxeroides to the unpredictable generalist herbivores in the introduced ranges. Herbivory-induced trans-generational effects may be transient for clonal offspring of A. philoxeroides, which can be influenced by the branching order of taproots, but be less characterized by DNA methylation.

4.
Plant Cell Physiol ; 63(10): 1344-1355, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35866611

RESUMEN

Herbivory-induced plant volatiles (HIPVs) are involved in biotic interactions among plants as well as herbivorous and carnivorous arthropods. This review looks at the specificity in plant-carnivore communication mediated by specific blends of HIPVs as well as describes plant-herbivore and plant-plant communication mediated by specific HIPVs. Factors affecting the net benefits of HIPV production have also been examined. These specific means of communication results in high complexity in the 'interaction-information network', which should be explored further to elucidate the mechanism underlying the numerous species coexisting in ecosystems.


Asunto(s)
Herbivoria , Compuestos Orgánicos Volátiles , Ecosistema , Plantas
5.
Front Plant Sci ; 13: 790504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251075

RESUMEN

BACKGROUND: Biocontrol strategies are the best possible and eco-friendly solution to develop resistance against O furnacalis and improve the maize yield. However, the knowledge about underlying molecular mechanisms, metabolic shifts, and hormonal signaling is limited. METHODS: Here, we used an axenic and a consortium of entomopathogenic Beauveria bassiana OFDH1-5 and a pathogen-antagonistic Trichoderma asperellum GDFS1009 in maize and observed that consortium applications resulted in higher chlorophyll contents and antioxidants activities [superoxide dismutase (SOD), peroxidase (POD), proline, protease, and polyphenol oxidase (PPO)] with a decrease in O. furnacalis survival. We performed a comprehensive transcriptome and an untargeted metabolome profiling for the first time at a vegetative stage in fungal inoculated maize leaves at 0-, 12-, 24-, 48-, and 72-h post insect infestation. RESULTS: The consortium of B. bassiana and T. asperellum leads to 80-95% of O. furnacalis mortality. A total of 13,156 differentially expressed genes were used for weighted gene coexpression network analysis. We identified the six significant modules containing thirteen candidate genes [protein kinase (GRMZM2G025459), acyl-CoA dehydrogenase (GRMZM5G864319), thioredoxin gene (GRMZM2G091481), glutathione S-transferase (GRMZM2G116273), patatin-like phospholipase gene (GRMZM2G154523), cytochrome P450 (GRMZM2G139874), protease inhibitor (GRMZM2G004466), (AC233926.1_FG002), chitinase (GRMZM2G453805), defensin (GRMZM2G392863), peroxidase (GRMZM2G144153), GDSL- like lipase (AC212068.4_FG005), and Beta-glucosidase (GRMZM2G031660)], which are not previously reported that are highly correlated with Jasmonic acid - Ethylene (JA-ET) signaling pathway and antioxidants. We detected a total of 130 negative and 491 positive metabolomic features using a ultrahigh-performance liquid chromatography ion trap time-of-flight mass spectrometry (UHPLC-QTOF-MS). Intramodular significance and real time-quantitative polymerase chain reaction (RT-qPCR) expressions showed that these genes are the true candidate genes. Consortium treated maize had higher jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) levels. CONCLUSION: Our results provide insights into the genetics, biochemicals, and metabolic diversity and are useful for future biocontrol strategies against ACB attacks.

6.
Plant Signal Behav ; 16(12): 1962050, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34435930

RESUMEN

The Physalis genus includes species of commercial importance due to their ornamental, edible and medicinal properties. These qualities stem from their variety of biologically active compounds. We performed a metabolomic analysis of three Physalis species, i.e., P. angulata, P. grisea, and P. philadelphica, differing in domestication stage and cultivation practices, to determine the degree of inter-species metabolite variation and to test the hypothesis that these related species mount a common metabolomic response to foliar damage caused by Trichoplusia ni larvae. The results indicated that the metabolomic differences detected in the leaves of these species were species-specific and remained even after T. ni herbivory. They also show that each Physalis species displayed a unique response to insect herbivory. This study highlighted the metabolite variation present in Physalis spp. and the persistence of this variability when faced with biotic stressors. Furthermore, it sets an experimental precedent from which highly species-specific metabolites could be identified and subsequently used for plant breeding programs designed to increase insect resistance in Physalis and related plant species.


Asunto(s)
Physalis , Animales , Herbivoria , Larva , Metabolómica , Hojas de la Planta
7.
R Soc Open Sci ; 7(11): 201592, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33391814

RESUMEN

We investigated the recruitment of specific parasitoids using a specific blend of synthetic herbivory-induced plant volatiles (HIPVs) as a novel method of pest control in greenhouses. In the Miyama rural area in Kyoto, Japan, diamondback moth (DBM) (Plutella xylostella, Lepidoptera: Plutellidae) larvae are an important pest of cruciferous crops in greenhouses, and Cotesia vestalis (Hymenoptera: Braconidae), a larval parasitoid of DBM, is found in the surrounding areas. Dispensers of HIPVs that attracted C. vestalis and honey feeders were set inside greenhouses (treated greenhouses). The monthly incidence of DBMs in the treated greenhouses was significantly lower than that in the untreated greenhouses over a 2-year period. The monthly incidences of C. vestalis and DBMs were not significantly different in the untreated greenhouses, whereas monthly C. vestalis incidence was significantly higher than monthly DBM incidence in the treated greenhouses. Poisson regression analyses showed that, in both years, a significantly higher number of C. vestalis was recorded in the treated greenhouses than in the untreated greenhouses when the number of DBM adults increased. We concluded that DBMs were suppressed more effectively by C. vestalis in the treated greenhouses than in the untreated greenhouses.

8.
Insects ; 10(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621292

RESUMEN

Upon herbivory, plants release herbivore-induced plant volatiles (HIPVs), which induce chemical defenses in the plant as well as recruit natural enemies. However, whether synthetic HIPVs can be employed to enhance biological control in a cultivated crop in the field is yet to be explored. Here we show that a biodegradable formulation loaded with induced and food-signaling volatiles can selectively recruit the common green lacewing, Chrysoperla carnea, and reduce pest population under field conditions. In apple orchards, the new formulation attracted lacewing adults over a 4-week period, which correlated well with independent assessments of the longevity of the slow-release matrix measured through chemical analyses. In barley, lacewing eggs and larvae were significantly more abundant in treated plots, whereas a significant reduction of two aphid species was measured (98.9% and 93.6% of population reduction, for Sitobion avenae and Rhopalosiphum padi, respectively). Results show the potential for semiochemical-based targeted recruitment of lacewings to enhance biological control of aphids in a field setting. Further research should enhance selective recruitment by rewarding attracted natural enemies and by optimizing the application technique.

9.
Pest Manag Sci ; 75(5): 1310-1316, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30353669

RESUMEN

BACKGROUND: The application of biochar as a targeted strategy for managing herbivorous pests is a topic of growing interest. The present study first determined the influence of biochar amendments on the reproductive performance of the English grain aphid Sitobion avenae, and then examined defense-related gene expression in the wheat plant as a function of biochar amendments and aphid feeding. RESULTS: Compared to the control, biocahr amendments decreased aphid lifetime fertility by 9.09% and 20.23% for amending levels at 3% and 5%, respectively; it reduced aphid population by 18.68%, 21.69%, and 28.70% for the levels at 1.5%, 3%, and 5%, respectively. Biochar applications increased silicon content more than 40% in wheat plants. Furthermore, biochar additions increased the expression of four defense-related genes (AOS, LOX, PAL and PR) in wheat plants with extension of feeding time by aphids. CONCLUSION: Our results suggest that biochar amendments to soils have detrimental consequences on the reproductive potential of the aphid on the wheat, and the effect may result from aphid-induced plant defenses being raised by biochar applications. © 2018 Society of Chemical Industry.


Asunto(s)
Áfidos/genética , Áfidos/fisiología , Carbón Orgánico/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Áfidos/efectos de los fármacos , Áfidos/crecimiento & desarrollo , Fertilidad/efectos de los fármacos , Fertilidad/genética , Reproducción/efectos de los fármacos , Reproducción/genética
10.
Ecol Evol ; 7(11): 3703-3712, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28616167

RESUMEN

Induced changes in root carbohydrate pools are commonly assumed to determine plant defoliation tolerance to herbivores. However, the regulation and species specificity of these two traits are not well understood. We determined herbivory-induced changes in root carbohydrates and defoliation tolerance in seven different solanaceous plant species and correlated the induced changes in root carbohydrates and defoliation tolerance with jasmonate inducibility. Across species, we observed strong species-specific variation for all measured traits. Closer inspection revealed that the different species fell into two distinct groups: Species with a strong induced jasmonic acid (JA) burst suffered from a reduction in root carbohydrate pools and reduced defoliation tolerance, while species with a weak induced JA burst maintained root carbohydrate pools and tolerated defoliation. Induced JA levels predicted carbohydrate and regrowth responses better than jasmonoyl-L-isoleucine (JA-Ile) levels. Our study shows that induced JA signaling, root carbohydrate responses, and defoliation tolerance are closely linked, but highly species specific, even among closely related species. We propose that defoliation tolerance may evolve rapidly via changes in the plant's defense signaling network.

11.
New Phytol ; 215(3): 1264-1273, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28618009

RESUMEN

Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade.


Asunto(s)
Evolución Molecular , Herbivoria/genética , Nicotiana/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transducción de Señal , Nicotiana/inmunología
12.
Curr Biol ; 27(9): 1336-1341, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28434859

RESUMEN

More than 87% of flowering plant species are animal-pollinated [1] and produce floral scents and other signals to attract pollinators. These floral cues may however also attract antagonistic visitors, including herbivores [2]. The dilemma is exacerbated when adult insects pollinate the same plant that their larvae consume. It remains largely unclear how plants maximize their fitness under these circumstances. Here we show that in the night-flowering wild tobacco Nicotiana attenuata, the emission of a sesquiterpene, (E)-α-bergamotene, in flowers increases adult Manduca sexta moth-mediated pollination success, while the same compound in leaves is known to mediate indirect defense against M. sexta larvae [3, 4]. Forward and reverse genetic analyses demonstrated that both herbivory-induced and floral (E)-α-bergamotene are regulated by the expression of a monoterpene-synthase-derived sesquiterpene synthase (NaTPS38). The expression pattern of NaTPS38 also accounts for variation in (E)-α-bergamotene emission among natural accessions. These results highlight that differential expression of a single gene that results in tissue-specific emission of one compound contributes to resolving the dilemma for plants when their pollinators are also herbivores. Furthermore, this study provides genetic evidence that pollinators and herbivores interactively shape the evolution of floral signals and plant defense.


Asunto(s)
Compuestos Bicíclicos con Puentes/metabolismo , Herbivoria , Manduca/fisiología , Nicotiana/química , Nicotiana/fisiología , Hojas de la Planta/fisiología , Polinización , Transferasas Alquil y Aril/metabolismo , Animales , Flores/química , Flores/citología , Flores/fisiología , Especificidad de Órganos , Hojas de la Planta/química , Hojas de la Planta/citología , Nicotiana/citología
13.
Elife ; 1: e00007, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066503

RESUMEN

From an herbivore's first bite, plants release herbivory-induced plant volatiles (HIPVs) which can attract enemies of herbivores. However, other animals and competing plants can intercept HIPVs for their own use, and it remains unclear whether HIPVs serve as an indirect defense by increasing fitness for the emitting plant. In a 2-year field study, HIPV-emitting N. attenuata plants produced twice as many buds and flowers as HIPV-silenced plants, but only when native Geocoris spp. predators reduced herbivore loads (by 50%) on HIPV-emitters. In concert with HIPVs, plants also employ antidigestive trypsin protease inhibitors (TPIs), but TPI-producing plants were not fitter than TPI-silenced plants. TPIs weakened a specialist herbivore's behavioral evasive responses to simulated Geocoris spp. attack, indicating that TPIs function against specialists by enhancing indirect defense.DOI:http://dx.doi.org/10.7554/eLife.00007.001.


Asunto(s)
Hemípteros/efectos de los fármacos , Herbivoria/efectos de los fármacos , Nicotiana/inmunología , Hojas de la Planta/inmunología , Compuestos Orgánicos Volátiles/farmacología , Animales , Flores/crecimiento & desarrollo , Aptitud Genética/fisiología , Hemípteros/patogenicidad , Hemípteros/fisiología , Herbivoria/fisiología , Larva/parasitología , Manduca/parasitología , Hojas de la Planta/metabolismo , Nicotiana/metabolismo , Inhibidores de Tripsina/metabolismo , Inhibidores de Tripsina/farmacología , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA